Skip to main content
Log in

Ultra-broadband semiconductor laser

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum1,2, multi-peaked gain spectra3,4, and the most favoured technique at present, ultrashort pulse excitation5,6. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared ‘supercontinuum’ semiconductor laser that has none of these drawbacks. We adopt a quantum cascade7,8 configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8 µm wavelength. Laser action with a Fabry–Pérot spectrum covering all wavelengths from 6 to 8 µm simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications9 or ultra-precision metrology10 and spectroscopy11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Design results of the supercontinuum laser.
Figure 2: Luminescence spectra.
Figure 3: Above-threshold spectra of the supercontinuum laser.
Figure 4: Light and voltage versus current characteristics of the supercontinuum laser.

Similar content being viewed by others

References

  1. Mittelstein, M. et al. Broadband tunability of gain-flattened quantum well semiconductor lasers with an external grating. Appl. Phys. Lett. 54, 1092–1094 (1989).

    Article  CAS  ADS  Google Scholar 

  2. Hall, D. C. et al. Broadband long-wavelength operation (9700 Å ≥ λ ≥ 8700 Å) of AlyGa1-yAs-GaAs-InxGa1-xAs quantum well heterostructure lasers in an external grating cavity. Appl. Phys. Lett. 55, 752–754 (1989).

    Article  CAS  ADS  Google Scholar 

  3. Chernikov, S. V. et al. Supercontinuum self-Q-switched ytterbium fiber laser. Opt. Lett. 22, 298–300 (1997).

    Article  CAS  ADS  Google Scholar 

  4. Fuke, A., Masuda, K. & Tokita, Y. High power He-Cd+ white light laser. AIP Conf. Proc. 160, 229–231 (1987).

    Article  CAS  ADS  Google Scholar 

  5. Spielmann, C. et al. Ultrabroadband femtosecond lasers. IEEE J. Quantum Electron. 30, 1100–1114 (1994).

    Article  CAS  ADS  Google Scholar 

  6. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm. Opt. Lett. 25, 25–27 (2000).

    Article  CAS  ADS  Google Scholar 

  7. Capasso, F. et al. New frontiers in quantum cascade lasers and applications. IEEE J. Select. Topics Quantum Electron. 6, 931–947 (2000).

    Article  CAS  ADS  Google Scholar 

  8. Gmachl, C., Capasso, F., Sivco, D. L. & Cho, A. Y. Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533–1601 (2001).

    Article  CAS  ADS  Google Scholar 

  9. Collings, B. C., Mitchell, M. L., Boivin, L. & Knox, W. H. A 1021 channel WDM system. Opt. Photon. News 11, 31–35 (2000).

    Article  ADS  Google Scholar 

  10. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  CAS  ADS  Google Scholar 

  11. Schiff, H. I., Mackay, G. I. & Bechara, J. in Air Monitoring by Spectroscopic Techniques (ed. Sigrist, M. W.) Ch. 5, 239–333 (Wiley Interscience, New York, 1994).

    Google Scholar 

  12. Campman, K. L., Schmidt, H., Imamoglu, A. & Gossard, A. C. Interface roughness and alloy-disorder scattering contributions to intersubband transition linewidths. Appl. Phys. Lett. 69, 2554–2556 (1996).

    Article  CAS  ADS  Google Scholar 

  13. Capasso, F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987).

    Article  CAS  ADS  Google Scholar 

  14. Muravjov, A. V., Withers, S. H., Pavlov, S. G., Shastin, V. N. & Peale, R. N. Broad band p-Ge optical amplifier of terahertz radiation. J. Appl. Phys. 86, 3512–3515 (1999).

    Article  CAS  ADS  Google Scholar 

  15. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  CAS  ADS  Google Scholar 

  16. Cho, A. Y. (ed.) Molecular Beam Epitaxy (AIP Press, Woodbury, New York, 1994).

    Google Scholar 

  17. Sirtori, C. et al. Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength. Appl. Phys. Lett. 66, 3242–3244 (1995).

    Article  CAS  ADS  Google Scholar 

  18. Gmachl, C. et al. Quantum cascade lasers with a heterogeneous cascade: Two-wavelength operation. Appl. Phys. Lett. 79, 572–574 (2001).

    Article  CAS  ADS  Google Scholar 

  19. Faist, J. et al. High-power mid-infrared (λ ∼ 5 µm) quantum cascade lasers operating above room temperature. Appl. Phys. Lett. 68, 3680–3682 (1996).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. N. G. Chu for help with material characterization, in particular transmission electron microscopy; T. S. Mosely and A. Straub for help with measurements; and D. A. Ackerman for discussions. This work was supported in part by DARPA/US Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Gmachl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gmachl, C., Sivco, D., Colombelli, R. et al. Ultra-broadband semiconductor laser. Nature 415, 883–887 (2002). https://doi.org/10.1038/415883a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415883a

  • Springer Nature Limited

This article is cited by

Navigation