Skip to main content
Log in

Crossover between classical and quantum shot noise in chaotic cavities

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The discreteness of charge in units of e led Schottky in 1918 to predict that the electrical current in a vacuum tube fluctuates even if all spurious noise sources are eliminated carefully1. This phenomenon is now widely known as shot noise. In recent years, shot noise in mesoscopic conductors, where charge motion is quantum-coherent over distances comparable to the system size, has been studied extensively2,3,4,5. In those experiments, charge does not propagate as an isolated entity through free space, as for vacuum tubes, but is part of a degenerate and quantum-coherent Fermi sea of charges. It has been predicted that shot noise in mesoscopic conductors can disappear altogether when the system is tuned to a regime where electron motion becomes classically chaotic6. Here we experimentally verify this prediction by using chaotic cavities where the time that electrons dwell inside can be tuned7. Shot noise is present for large dwell times, where the electron motion through the cavity is ‘smeared’ by quantum scattering, and it disappears for short dwell times, when the motion becomes classically deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Origin of noise.
Figure 2: Chaotic cavity in the classical and quantum regime.
Figure 3: Fano factor FS/2e|I| versus inverse dwell time τ-1D of a symmetric cavity (NL = NR).
Figure 4: Measured Fano factors in various magnetic fields.

Similar content being viewed by others

References

  1. Schottky, W. Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Ann. Phys. (Leipz.) 57, 541–568 (1918).

    Article  ADS  Google Scholar 

  2. Blanter, Y. M. & Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Lesovik, G. B. Excess quantum noise in 2D ballistic point contacts. JETP Lett. 49, 592–594 (1989).

    ADS  Google Scholar 

  4. Reznikov, M., Heiblum, M., Shtrikman, H. & Mahalu, D. Temporal correlation of electrons: Suppression of shot noise in a ballistic quantum point contact. Phys. Rev. Lett. 75, 3340–3343 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Kumar, A., Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Experimental test of the quantum shot noise reduction theory. Phys. Rev. Lett. 76, 2778–2781 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Agam, O., Aleiner, I. & Larkin, A. Shot noise in chaotic systems: Classical to quantum crossover. Phys. Rev. Lett. 85, 3153–3156 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Oberholzer, S. et al. Shot noise by quantum scattering in chaotic cavities. Phys. Rev. Lett. 86, 2114–2117 (2001).

    Article  ADS  CAS  Google Scholar 

  8. Hartmann, C. A. Über die Bestimmung des elektrischen Elementarquantums aus dem Schroteffekt. Ann. Phys. (Leipz.) 65, 51–78 (1921).

    Article  ADS  CAS  Google Scholar 

  9. Hull, A. W. & Williams, N. H. Determination of elementary charge e from measurements of the shot-effect. Phys. Rev. 25, 147–173 (1925).

    Article  ADS  CAS  Google Scholar 

  10. Büttiker, M. Scattering theory of current and intensity noise correlations in conductors and wave guides. Phys. Rev. B 46, 12485–12507 (1992).

    Article  ADS  Google Scholar 

  11. Beenakker, C. W. J. & van Houten, H. Semiclassical theory of shot noise and its suppression in a conductor with deterministic scattering. Phys. Rev. B 43, 12066–12069 (1992).

    Article  ADS  Google Scholar 

  12. van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–851 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Wharam, D. A. et al. One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C 21, L209–L214 (1988).

    Article  Google Scholar 

  14. Blanter, Y. M. & Sukhorukov, E. V. Semiclassical theory of conductance and noise in open chaotic cavities. Phys. Rev. Lett. 84, 1280–1283 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Jalabert, R. A., Pichard, J.-L. & Beenakker, C. W. J. Universal quantum signatures of chaos in ballistic transport. Europhys. Lett. 27, 255–2660 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Büttiker and H. Thomas for discussions. This work was supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schönenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberholzer, S., Sukhorukov, E. & Schönenberger, C. Crossover between classical and quantum shot noise in chaotic cavities. Nature 415, 765–767 (2002). https://doi.org/10.1038/415765a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415765a

  • Springer Nature Limited

This article is cited by

Navigation