Skip to main content

Advertisement

Log in

Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Increasingly detailed structural1 and dynamic2,3 studies are highlighting the precision with which biomolecules execute often complex tasks at the molecular scale. The efficiency and versatility of these processes have inspired many attempts to mimic or harness them. To date, biomolecules have been used to perform computational operations4 and actuation5, to construct artificial transcriptional loops that behave like simple circuit elements6,7 and to direct the assembly of nanocrystals8. Further development of these approaches requires new tools for the physical and chemical manipulation of biological systems. Biomolecular activity has been triggered optically through the use of chromophores9,10,11,12,13,14, but direct electronic control over biomolecular ‘machinery’ in a specific and fully reversible manner has not yet been achieved. Here we demonstrate remote electronic control over the hybridization behaviour of DNA molecules, by inductive coupling of a radio-frequency magnetic field to a metal nanocrystal covalently linked to DNA15. Inductive coupling to the nanocrystal increases the local temperature of the bound DNA, thereby inducing denaturation while leaving surrounding molecules relatively unaffected. Moreover, because dissolved biomolecules dissipate heat in less than 50 picoseconds (ref. 16), the switching is fully reversible. Inductive heating of macroscopic samples is widely used17,18,19, but the present approach should allow extension of this concept to the control of hybridization and thus of a broad range of biological functions on the molecular scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Inductive coupling to nanocrystals linked to DNA and evidence of dehybridization.
Figure 2: Determination of effective temperature from inductive coupling to a gold nanocrystal linked to DNA.
Figure 3: Testing selectivity.

Similar content being viewed by others

References

  1. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  ADS  CAS  Google Scholar 

  2. Deniz, A. A. et al. Single-molecule protein folding: Diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc. Natl Acad. Sci. USA 97, 5179–5184 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Davenport, R., Wuite, G., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Winfree, E., Liu, F., Wenzler, L. & Seeman, N. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–44 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Yurke, B. et al. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  ADS  CAS  Google Scholar 

  6. McAdams, H. H. & Arkin, A. Gene regulation: towards a circuit engineering discipline. Curr. Biol. 10, R318–R320 (2000).

    Article  CAS  Google Scholar 

  7. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F. & Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Telford, J. R., Wittung-Stafshede, P., Gray, H. B. & Winkler, J. R. Protein folding triggered by electron transfer. Acc. Chem. Res. 31, 755–763 (1998).

    Article  CAS  Google Scholar 

  10. Monroe, W. T., McQuain, M. M., Chang, M. S., Alexander, J. S. & Haselton, F. R. Targeting expression with light using caged DNA. J. Biol. Chem. 274, 20895–20900 (1999).

    Article  CAS  Google Scholar 

  11. Asanuma, H., Yoshida, T., Ito, T. & Komiyama, M. Photo-responsive oligonucleotides carrying azobenzene at the 2’-position of uridine. Tetrahedr. Lett. 40, 7995–7998 (1999).

    Article  CAS  Google Scholar 

  12. Liu, D., Karanicolas, J., Yu, C., Zhang, Z. & Woolley, G. A. Site-specific incorporation of photoisomerizable azobenzene groups into Ribonuclease S. Bioorg. Med. Chem. Lett. 7, 2677–2680 (1997).

    Article  CAS  Google Scholar 

  13. Haupts, U., Tittor, J. & Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct. 28, 367–99 (1999).

    Article  CAS  Google Scholar 

  14. Ashkenazi, G., Ripoll, D. R., Lotan, N. & Scheraga, H. A. A molecular switch for biochemical logic gates: Conformational studies. Biosens. Bioelectron. 12, 85–95 (1997).

    Article  CAS  Google Scholar 

  15. Hamad-Schifferli, K., Schwartz, J. J., Santos, A. T., Zhang, S. & Jacobson, J. M. in Mater. Res. Soc. Proc. (eds Hahn, H. W., Feldheim, D. L., Kubiak, C. P., Tannenbaum, R. & Siegel, R. W.) Y8.43 (MRS, San Francisco, 2001).

    Google Scholar 

  16. Lian, T., Locke, B., Kholodenko, Y. & Hochstrasser, R. M. Energy flow solute to solvent probed by femtosecond IR spectroscopy: malachite green and heme protein solutions. J. Phys. Chem. 98, 11648–11656 (1994).

    Article  CAS  Google Scholar 

  17. Orfeuil, M. Electric Process Heating: Technologies/ Equipment/ Applications (Battelle Press, Columbus, Ohio, 1987).

    Google Scholar 

  18. Zinn, S. & Semiatin, S. L. Elements of Induction Heating, Design Control, and Applications (ASM International, Materials Park, Ohio, 1988).

    Google Scholar 

  19. Hergt, R. et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Bonnet, G., Tyagi, S., Libchaber, A. & Kramer, F. R. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc. Natl Acad. Sci. USA 96, 6171–6176 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Taton, A. T., Mirkin, C. A. & Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P. & Schultz, P. G. DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Edn Engl. 38, 1808–1812 (1999).

    Article  CAS  Google Scholar 

  23. Mattoussi, H. et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000).

    Article  CAS  Google Scholar 

  24. Zanchet, D., Micheel, C. M., Parak, W. J., Gerion, D. & Alivisatos, A. P. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nanoletters 1, 32–35 (2001).

    Article  ADS  CAS  Google Scholar 

  25. Bonnet, G., Krichevsky, O. & Libchaber, A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl Acad. Sci. USA 95, 8602–8606 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Cantor, C. R. & Schimmel, P. Biophysical Chemistry (Freeman, San Francisco, 1980).

    Google Scholar 

  27. Mao, C., LaBean, T. H., Reif, J. H. & Seeman, N. C. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Probst, J. C. Antisense oligodeoxynucleotide and ribozyme design. Methods 22, 271–281 (2000).

    Article  CAS  Google Scholar 

  29. Reardon, J. E. & Frey, P. A. Synthesis of undecagold cluster molecules as biochemical labeling reagents. 1. Monoacyl and mono[N-succinimidooxy)succinyl] undecagold clusters. Biochemistry 23, 3849–3856 (1984).

    Article  CAS  Google Scholar 

  30. Hermanson, G. T. Bioconjugate Techniques (Academic, San Diego, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank N. Afeyan, E. Lander and P. Matsudaira for discussions in the early stages of this work, and J.P. Shi for comments on the experimental work. This work was supported by DARPA and the MIT Media Lab TTT consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Jacobson.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamad-Schifferli, K., Schwartz, J., Santos, A. et al. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415, 152–155 (2002). https://doi.org/10.1038/415152a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415152a

  • Springer Nature Limited

This article is cited by

Navigation