Skip to main content
Log in

Hafnium–tungsten chronometry and the timing of terrestrial core formation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE accretion of the Earth and Moon within the solar nebula is thought1–3 to have taken 50 to 100 million years. But the timing of formation of the Earth's core has been controversial, with some4,5 proposing that it took place within the first 15 Myr of Earth's accretion history and others6,7 proposing that it occurred after 50 Myr of accretion. Meteorite chronometry based on the 182Hf–182W system has the potential to resolve this debate, as segregation of a metal core from silicates should induce strong fractionation of hafnium from tungsten. Here we report tungsten isotope compositions for two iron meteorites, two carbonaceous chondrites, and a lunar mare basalt. We see clear 182W deficits in both iron meteorites, in agreement with previous results4,5. But the data for chondrites are inconsistent with the hypothesis of early core formation, suggesting that both this event and the formation of the Moon must have occurred at least 62 ± 10 Myr after the iron meteorites formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swindle, T. D., Caffee, M. W., Hohenberg, C. M. & Taylor, S. R. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 331–358 (Lunar Planetary Inst., Houston, 1986).

    Google Scholar 

  2. Wetherill, G. W. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 519–550 (Lunar Planetary Inst, Houston, 1986).

    Google Scholar 

  3. Carlson, R. W. & Lugmair, G. W. Earth planet. Sci. Lett. 90, 119–130 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Harper, C. L., Völkening, J., Heumann, K. G., Shih, C.-Y. & Wiesmann, H. Lunar planet. Sci. XXII, 515–516 (1991).

    ADS  Google Scholar 

  5. Jacobsen, S. B. & Harper, C. L. in Isotopic Studies of Crust-Mantle Evolution (eds Basu, A. R. & Hart, S. R.) (Am. Geophys. Union, in the press).

  6. Gaier, S. J. G. & Goldstein, S. L. in Isotopic Studies of Crust-Mantle Evolution (eds Basu, A. R. & Hart, S. R.) (Am. Geophys. Union, in the press).

  7. Allègre, C. J., Dupré, B. & Brévart, O. Phil. Trans. R. Soc. Lond. A 306, 49–59 (1982).

    Article  ADS  Google Scholar 

  8. Käppeler, F., Beer, H. & Wisshak, K. Rep. Prog. Phys. 52, 945 (1989).

    Article  ADS  Google Scholar 

  9. Völkening, J., Köppe, M. & Heumann, K. G. Int. J. Mass Spectrom. Ion. Proc. 107, 361–368 (1991).

    Article  ADS  Google Scholar 

  10. Walder, A. J. & Freedman, P. A. J. analyt. atom. Spectrom. 7, 571–575 (1992).

    Article  CAS  Google Scholar 

  11. Halliday, A. N. et al. Int. J. Mass Spectrom. Ion. Proc. 146/147, 21–33 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Lee, D.-C. & Halliday, A. N. Int. J. Mass Spectrom. Ion. Proc. 146/147, 35–46 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Yi, W., Halliday, A. N., Lee, D.-C. & Christensen, J. N. Geochim. cosmochim. Acta (in the press).

  14. Masarik, J. & Reedy, R. C. Meteorites 29, 497–498 (1994).

    Google Scholar 

  15. Ireland, T. R. Lunar planet. Sci. XXII, 609–610 (1991).

    ADS  Google Scholar 

  16. Wasson, J. T. & Kallemeyn, G. W. Phil. Trans. R. Soc. Lond. A 325, 535–544 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Newsom, H. E. et al. Geochim. cosmochim. Acta (in the press).

  18. Allègre, C. J., Manhès, G. & Göpel, C. Geochim. cosmochim. Acta 59, 1445–1456 (1995).

    Article  ADS  Google Scholar 

  19. Wänke, H. Phil. Trans. R. Soc. Lond. A 303, 287–302 (1981).

    Article  ADS  Google Scholar 

  20. Wänke, H., Dreibus, G. & Jagoutz, E. in Archean Geochemistry (eds Kroner, A., Hanson, G. N. & Goodwin, A. M.) 1–24 (Springer, New York, 1984).

    Book  Google Scholar 

  21. Newsom, H. E. & Taylor, S. R. Nature 338, 29–34 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Newsom, H. E. & Sims, K. W. W. Science 252, 926–933 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Newsom, H. E. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 203–229 (Lunar Planetary Inst., Houston, 1986).

    Google Scholar 

  24. Hartmann, W. K. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 579–608 (Lunar Planetary Inst., Houston, 1986).

    Google Scholar 

  25. Cameron, A. G. W. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 609–616 (Lunar Planetary Inst., Houston, 1986).

    Google Scholar 

  26. Ringwood, A. E. Earth planet. Sci. Lett. 111, 537–555 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Hanan, B. B. & Tilton, G. R. Earth planet. Sci. Lett. 84, 15–30 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Alibert, C., Norman, M. D. & McCulloch, M. T. Geochim. cosmochim. Acta 58, 2921–2926 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Lugmair, G. W. & Maclsaac, Ch. Lunar planet. Sci. XXVI, 879–880 (1995).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DC., Halliday, A. Hafnium–tungsten chronometry and the timing of terrestrial core formation. Nature 378, 771–774 (1995). https://doi.org/10.1038/378771a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378771a0

  • Springer Nature Limited

This article is cited by

Navigation