Skip to main content

Mantle Chemistry and Accretion History of the Earth

  • Conference paper
Archaean Geochemistry

Abstract

The chemical composition of the Earth’s primitive mantle (present mantle + crust) yields important information about the accretion history of the Earth. For the upper mantle reliable data on its composition have been obtained from the study of primitive and unaltered ultramafic xenoliths (Jagoutz et al. 1979). Normalized to C 1 and Si the Earth’s mantle is slightly enriched in refractory oxyphile elements and in magnesium. It might be that this enrichment is fictitious and only due to the normalization to Si and that the Earth’s mantle is depleted in Si, which partly entered the Earth’s core in metallic form. Alternatively, the depletion of Si may only be valid for the upper mantle and is compensated by a Si enrichment of the lower mantle.

For the elements V, Cr, and Mn the most plausible explanation for their depletion in the Earth’s mantle is their partial removal into the core. Besides the high concentrations of moderately siderophile elements (Ni, Co, etc.) in the Earth’s mantle, the similarity of their C 1 abundances with that of moderately volatile (F, Na, K, Rb, etc.) and partly even with some highly volatile elements (In) is striking.

We report on new data especially concerning halogens and other volatiles. The halogens (CI, Br, I) are present in the Earth’s mantle in extremely low concentrations, but relative to each other they appear in C 1 abundance ratios.

To account for the observed abundances an inhomogeneous accretion from two components is proposed. According to this model accretion began with the highly reduced component A, with all Fe and even part of Si as metal and Cr, V, and Mn in reduced state, but almost devoid of moderately volatiles and volatiles. The accretion continued with more and more oxidized matter (component B), containing all elements, including moderately and at least some volatile elements in C 1 abundances. The two component inhomogeneous accretion model is discussed in light of the abundances of a number of elements which are especially crucial model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens TJ (1979) Equation of state of iron sulfides and constraints on the sulfur content of the Earth. J Geophys Res 84: 985–998

    Article  Google Scholar 

  • Anders E (1964) Origin, age and composition of meteorites. Space Sci Rev 3: 583–714

    Article  Google Scholar 

  • Anders E (1965) Chemical fractionations in meteorites. NASA Contract Rep CR-299

    Google Scholar 

  • Anderson DL (1982a) Isotopie evolution of the mantle: A model. Earth Planet Res Lett 57: 13–24

    Article  Google Scholar 

  • Anderson DL (1982b) Chemical composition and evolution of the mantle. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics, advances in Earth and planetary sciences, Vol 12, Japan, pp 301–318

    Google Scholar 

  • Anderson DL (1983) Chemistry of the primitive mantle. Lunar und Planetary Science-XIV, pp 5–6, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Armstrong RL (1968) A model for the evolution of strontium and lead isotopes in a dynamic Earth. Rev Geophys 6: 175–199

    Article  Google Scholar 

  • Armstrong RL (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Philos Trans R Soc Lond A 301: 443–472

    Article  Google Scholar 

  • Arrhenius G (1981) In: Stiller H, Sagdeev RZ (eds) Advances in space research (planetary interiors) 1: 37–48

    Google Scholar 

  • Brown JM, McQueen RG (1982) The equation of state for iron and the Earth’s core. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics, advances in Earth and planetary sciences, Vol 12, Japan, pp 611–623

    Google Scholar 

  • Burghele A, Dreibus G, Palme H, Rammensee W, Spettel B, Weckwerth G, Wànke H (1983) Chemistry of shergottites and the shergotty parent body (SPB): Further evidence for the two component model of planet formation. Lunar and Planetary Science-XIV, pp 80 - 81, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Cameron AGW (1978) Physics of the primitive solar accretion disk. Moon Planets 18: 5–40

    Article  Google Scholar 

  • Clayton DD (1980) Chemical energy of cold-cloud aggregates: The origin of meteoritic chondrules. Astrophys J 239: L37–L41

    Article  Google Scholar 

  • Cumming GL, Richards JR (1975) Ore lead isotope ratios in a continuously changing Earth. Earth Planet Sci Lett 28: 155–171

    Article  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys Res Lett 3: 743–746

    Article  Google Scholar 

  • Dreibus G, Wànke H (1979) On the chemical composition of the Moon and the eucrite parent body and a comparison with the composition of the Earth. Lunar and Planetary Science-X, pp 315–317, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Dupré B, Allègre CJ (1980) Pb-Sr-Nd isotopie correlation and the chemistry of the North Atlantic mantle. Nature 286: 17–22

    Article  Google Scholar 

  • Flasar FM, Birch F (1973) Energetics of Core formation: A correction. J Geophys Res 78: 6101–6103

    Article  Google Scholar 

  • Frey F, Prinz M (1978) Ultramafic inclusions form San Carlos, Arizona: Petrologie and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38: 129–179

    Article  Google Scholar 

  • Ganapathy R, Anders E (1974) Bulk compositions of the Moon and Earth, estimated from meteorites. Proc 5th Lunar Sci Conf, Geochim Cosmochim Acta, Suppl 5: 1181–1206

    Google Scholar 

  • Glikson AY (1979) Siderophile and lithophile trace-element evolution of the Archaean mantle. BMR J Aust Geol Geophys 4: 253–279

    Google Scholar 

  • Greenberg JM (1982) What are comets made of? A model based on interstellar dust. In: Wilkening LL (ed) Comets, University of Arizona Press, Tucson, Arizona, pp 131–163

    Google Scholar 

  • Hayashi C, Nakazawa K, Mizundo H (1979) Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet Sci Lett 43: 22–28

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57: 421–436

    Article  Google Scholar 

  • Hofmann AW, White WM (1983) Ba, Rb and Cs in the Earth’s mantle. Z Naturforsch 38a: 256–266

    Google Scholar 

  • Hunt JM (1972) Distribution of carbon in crust of Earth. Bull Am Assoc Petrol Geol 56: 2273–2277

    Google Scholar 

  • Hutchison R (1974) The formation of the Earth. Nature 250: 556–558

    Article  Google Scholar 

  • Irving AJ (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochim Cosmochim Acta 42: 743–770

    Article  Google Scholar 

  • Jackson I, Ringwood AE (1981) High-pressure polymorphism of the iron oxides. Geophys J R Astr Soc 64: 767–783

    Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorentz V, Wänke H (1979) The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Proc 10th Lunar Planet Sei Conf, Geochim Cosmochim Acta, Suppl 11: 2031–2050

    Google Scholar 

  • Jagoutz E, Carlson RW, Lugmair GW (1980) Equilibrated Nd-unequilibrated Sr isotopes in mantle xenoliths. Nature 286: 708–710

    Article  Google Scholar 

  • Jagoutz E, Wänke H (1982) Has the Earth’s core grown over geologic times? Lunar and Planetary Science-XIII, pp 358–359, Lunar and Planetary Science Institute, Houston

    Google Scholar 

  • Jagoutz E, Dawson JB, Hoernes S, Spettel B, Wänke H (1984) Anorthositic oceanic crust in the Archaean Earth. Lunar and Planetary Science-XV, pp 395–396, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Kallemeyn GW, Wasson JT (1981) The compositional classification of chondrites - I. The carbonaceous chondrite groups. Geochim Cosmochim Acta 45: 1217–1230

    Article  Google Scholar 

  • Kaula WM (1979) Thermal evolution of Earth and Moon growing by planetesimal impacts. J Geophys Res 84: 999–1008

    Article  Google Scholar 

  • Lange ML, Ahrens T (1982) The evolution of an impact-generated atmosphere. Icarus 51: 96–120

    Article  Google Scholar 

  • Lange ML, Ahrens T (1983) Shock-induced CO2-production from carbonates and a proto-CO2-at- mosphere on the Earth. Lunar and Planetary Science XIV, pp 419–420, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Lee T, Papanastassiou DA, Wasserburg GJ (1976) Demonstration of 26Mg excess in Allende and evidence for 26AI. Geophys Res Lett 3: 41–44

    Article  Google Scholar 

  • Liu L-G (1979) On the 650-km discontinuity. Earth Planet Sei Lett 42: 202–208

    Article  Google Scholar 

  • Mathis JS, Rumpl W, Nordsieck KN (1977) The size distribution of interstellar grains. Astrophys J 217: 425–433

    Article  Google Scholar 

  • Matsui T, Abe Y (1984) The formation of an impact-generated H2O atmosphere and its implication for the early thermal history of the Earth. Lunar and Planetary Science-XV, pp 517–518, Lunar and Planetary Institute, Houston

    Google Scholar 

  • McCammon CA, Ringwood AR, Jackson I (1983) Thermodynamics of the system Fe-FeO-MgO at high pressure and temperature and a model for formation of the Earth’s core. Geophys J R Astr Soc 72: 577–595

    Google Scholar 

  • Mizuno H, Nakazawa K, Hayashi C (1980) Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet Sei Lett 50: 202–210

    Article  Google Scholar 

  • Moore JG, Fabbi BP (1971) An estimate of the juvenile sulfur content of basalt. Contrib Mineral Petrol 33: 118–127

    Article  Google Scholar 

  • Morgan JW, Wandless GA, Petrie RK, Irving AJ (1981) Composition of the Earth’s upper mantle–1. Siderophile trace elements in ultramafic nodules. Tectonics 75: 47–67

    Google Scholar 

  • Newsom HE, Drake MJ (1983) Experimental investigation of the partitioning of phosphorus between metal and silicate phases: Implication for the Earth, Moon, and eucrite parent body. Geochim Cosmochim Acta 47: 93–100

    Article  Google Scholar 

  • Newsom HE, Palme H (1984) The depletion of siderophile elements in the Earth’s mantle: New evidence from molybdenum and tungsten. Lunar and Planetary Science-XV, pp 607–608, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Nonaka J (1982) Über die Häufigkeit von bisher wenig untersuchten Elementen im Erdmantel. Thesis, Universtität Mainz

    Google Scholar 

  • Palme H, Suess HE, Zeh HD (1981) Abundances of the elements in the solar system. In: Schaifers K, Voigt HH (eds) Landoldt-Börnstein Vol 2, (Astronomy and astrophysics), Springer, Berlin Heidelberg New York pp 257–273

    Google Scholar 

  • Rambaldi ER, Cendales M, Thacker R (1978) Trace element distribution between magnetic and non-magnetic portions of ordinary chondrites. Earth Planet Sei Lett 40: 175–186

    Article  Google Scholar 

  • Rambaldi ER, Cendales M (1979) Moderately volatile siderophiles in ordinary chondrites. Earth Planet Sei Lett 44: 397–408

    Article  Google Scholar 

  • Rammensee W, Wänke H (1977) On the partition coefficient of tungsten between metal and silicate and its bearing on the origin of the moon. Proc Lunar Sei Conf 8th, Geochim Cosmochim Acta, Suppl 8: 399–409

    Google Scholar 

  • Ringwood AE (1958) The constitution of the mantle - III; Consequences of the olivine-spinel transition. Geochim Cosmochim Acta 15: 195–212

    Article  Google Scholar 

  • Ringwood AE (1966) Mineralogy of the Mantle. In: Hurley P (ed) Advances in Earth science, MIT Press, Boston, pp 357–398

    Google Scholar 

  • Ringwood AE (1970) Origin of the Moon: The precipitation hypothesis. Earth Planet Sei Lett 8: 131–140

    Article  Google Scholar 

  • Ringwood AE (1971) Core-mantle equilibrium: Comment on a paper by R Brett. Geochim Cosmochim Acta35:223–230

    Article  Google Scholar 

  • Ringwood AE (1977) Composition of the core and implications for origin of the Earth. Geochem J 11: 111–135

    Article  Google Scholar 

  • Ringwood AE, Kesson SE (1977) Basaltic magmatism and the bulk composition of the Moon II. Siderophile and volatile elements in Moon, Earth and chondrites. Implications for lunar origin. Moon 16: 425–464

    Article  Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and Moon. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Ringwood AE (1982) Phase transformations and differentiation in subducted lithosphere: Implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J. Geol. 90: 611–643

    Article  Google Scholar 

  • Ringwood AE (1983) Geochemical relationships between the Earth’s core and mantle. Lunar and Planetary Science-XIV, pp 646–647, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Safranov VS (1978) The heating of the Earth during its formation. Icarus 33: 3–12

    Article  Google Scholar 

  • Sakai H, Casadevall TJ, Moore JG (1982) Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea Volcano, Hawaii. Geochim Cosmochim Acta 46: 729–738

    Article  Google Scholar 

  • Schilling J-G, Bergeron MB, Evans R (1980) Volatiles in the mantle beneath the North Atlantic. Philos Trans R Soc Lond A 297: 147–178

    Article  Google Scholar 

  • Schmitt W, Wänke H (1984) Experimental determination of metal/silicate-partition coefficients of P, Ga, Ge, and W as function of oxygen fugacity. Lunar and Planetary Science-XV, pp 724 - 725, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Sekiya M, Nakazawa K, Hayashi C (1980) Dissipation of the rare gases contained in the primordial Earth’s atmosphere. Earth Planet Sei Lett 50: 197–201

    Article  Google Scholar 

  • Solomon SC, Ahrens TJ, Cassen PM, Hsui AT, Minear JW, Reynolds RT, Sleep NH, Strangway DW, Turcotte DL (1981) Chapter 9: Thermal histories of the terrestial planets. In: Basaltic volcanism on the terrestrial planets, pp 1129–1234, Pergamon, New York

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sei Lett 26: 207–221

    Article  Google Scholar 

  • Spettel B, Jagoutz E (1981) Granatlherzolite und Mantelzusammensetzung. Fortschr Miner 59: 259–260

    Google Scholar 

  • Sun S-S (1982) Chemical composition and the origin on the Earth’s primitive mantle. Geochim Cosmochim Acta 46: 179–192

    Article  Google Scholar 

  • Sun S-S (1984) Geochemical characteristics of Archaen ultramafic and mafic volcanic rocks: Implications for mantle composition and evolution. This Vol. 25–46

    Google Scholar 

  • Unni CK, Schilling J-G (1978) CI and Br degassing by volcanism along the Reykjanes Ridge and Iceland. Nature 272: 5648–5652

    Article  Google Scholar 

  • Vidal P, Dosso L (1978) Core formation: catastrophic or continuous? Sr and Pb isotope geochemistry constraints. Geophys Res Lett 5: 169–172

    Article  Google Scholar 

  • Volmer R (1977) Terrestrial lead isotopic evolution and formation time of the Earth’s core. Nature 270: 144–147

    Article  Google Scholar 

  • Walker JCG (1982) The earliest atmosphere of the Earth. Precambrian Res 17: 147–171

    Article  Google Scholar 

  • Wänke H, Baddenhausen H, Dreibus G, Jagoutz E, Kruse H, Palme H, Spettel B, Teschke F (1973) Multielement analyses of Apollo 15, 16, and 17 samples and the bulk composition of the Moon. Proc 4th Lunar Sei Conf, Geochim Cosmochim Acta, Suppl 4: 1461–1481

    Google Scholar 

  • Wänke H (1981) Constitution of terrestrial planets. Philos Trans R Soc Lond A 303: 287–302

    Article  Google Scholar 

  • Wänke H, Dreibus G, Jagoutz E, Palme H, Rammensee W (1981) Chemistry of the Earth and the significance of planets and meteorite parent bodies. Lunar and Planetary Science-XII, pp 1139–1140, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Wänke H, Rammensee W (1981) Primary and secondary objects: A new concept of the early days of the solar nebula. Meteoritics 16: 397–398

    Google Scholar 

  • Weckwerth G (1983) Anwendung der instrumentellen ß-Strektrometrie im Bereich der Kosmochemie, insbesondere zur Messung von Phosphorgehalten. Thesis, Universität Mainz

    Google Scholar 

  • Wedepohl KH (1975) The contribution of chemical data to assumptions about the origin of magmas from the mantle. Fortschr Miner 52: 141–172

    Google Scholar 

  • Wedepohl KH (1981) Der primäre Erdmantel (Mp) und die durch die Krustenbildung verarmte Mantelzusammensetzung (Md). Fortschr Miner 59: 203–205

    Google Scholar 

  • Wetherill GW (1978) Accumulation of the terrestrial planets. In: Gehrels T (ed) Protostars and planets, University Arizona Press, Tucson, Arizona, p 565

    Google Scholar 

  • Williams DL, Von Herzen RP (1974) Heat loss from the Earth: New estimate. Geology (Boulder) 2: 327–328

    Article  Google Scholar 

  • Zartman RE, Tera F (1973) Lead concentration and isotopic composition in five peridotite inclusions of probable mantle origin. Earth Planet Sci Lett 20: 54–66

    Article  Google Scholar 

  • Zindler A, Jagoutz E, Goldstein S (1982) Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective. Nature 298: 519–523

    Article  Google Scholar 

  • Zook HA (1981) On a new model for the generation of chondrites. Lunar and Planetary Science-XII, pp 1242–1244, Lunar and Planetary Institute, Houston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wänke, H., Dreibus, G., Jagoutz, E. (1984). Mantle Chemistry and Accretion History of the Earth. In: Kröner, A., Hanson, G.N., Goodwin, A.M. (eds) Archaean Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70001-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70001-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70003-3

  • Online ISBN: 978-3-642-70001-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics