Skip to main content
Log in

Dendritic spines as basic functional units of neuronal integration

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MOST excitatory synaptic connections occur on dendritic spines1. Calcium imaging experiments have suggested that spines constitute individual calcium compartments2,3, but recent results have challenged this idea4,5. Using two-photon microscopy6 to image fluorescence with high resolution in strongly scattering tissue, we measured calcium dynamics in spines from CA1 pyramidal neurons in slices of rat hippocampus. Subthreshold synaptic stimulation and spontaneous synaptic events produced calcium accumulations that were localized to isolated spines, showed stochastic failure, and were abolished by postsynaptic blockers. Single somatic spikes induced fast-peaking calcium accumulation in spines throughout the cell. Pairing of spikes with synaptic stimulation was frequently cooperative, that is, it resulted in supralinear calcium accumulations. We conclude: (1) calcium channels exist in spine heads; (2) action potentials invade the spines; (3) spines are individual calcium compartments; and (4) spines can individually detect the temporal coincidence of pre- and postsynaptic activity, and thus serve as basic functional units of neuronal integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peters, A., Palay, S. L. & Webster, H. D. The Fine Structure of the Nervous System (Oxford University Press, New York, 1991).

  2. Müller, W. & Connor, J. A. Nature 354, 73–76 (1991).

    Article  ADS  Google Scholar 

  3. Guthrie, P. B., Segal, M. & Kater, S. B. Nature 354, 78–80 (1991).

    Article  ADS  Google Scholar 

  4. Murphy, T. H., Baraban, J. M., Gil Wier, W. & Blatter, L. A. Nature 263, 529–532 (1994).

    CAS  Google Scholar 

  5. Eilers, J., Augustine, G. J. & Konnerth, A. Nature 373, 155–158 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Denk, W., Strickler, J. H. & Webb, W. W. Science 248, 73–76 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Goeppert-Mayer, M. Annln Phys. 9, 273–183 (1931).

    Article  ADS  Google Scholar 

  8. Svaasand, L. O. & Ellingsen, R. Photochem. Photobiol. 38, 293–299 (1983).

    Article  CAS  Google Scholar 

  9. Denk, W. et al. J. Neurosci. Meth. 54, 151–162 (1994).

    Article  CAS  Google Scholar 

  10. Marty, A. & Neher, E. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 107–123 (Plenum, New York, 1983).

    Book  Google Scholar 

  11. Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. Pflügers Arch. 414, 600–612 (1989).

    Article  CAS  Google Scholar 

  12. Major, G., Evans, J. D. & Jack, J. B. Biophys. J. 65, 423–449 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Otmakhov, N., Shirke, A. M. & Malinow, R. Neuron 10, 1101–1111 (1993).

    Article  CAS  Google Scholar 

  14. Bekkers, J. M. & Stevens, C. F. Nature 346, 724–729 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Del Castillo, J. & Katz, B. J. Physiol. 124, 553–559 (1954).

    Article  CAS  Google Scholar 

  16. Gamble, E. & Koch, C. Science 236, 1311–1315 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Science 268, 297–300 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Jaffe, D. B., Fisher, S. A. & Brown, T. H. J. Neurobiol. 25, 220–233 (1994).

    Article  CAS  Google Scholar 

  19. Alford, S., Frenguelli, B. G., Schofield, J. G. & Collingridge, G. L. J. Physiol., Lond. 469, 693–716 (1993).

    Article  CAS  Google Scholar 

  20. Llano, I., DiPolo, R. & Marty, A. Neuron 12, 663–673 (1994).

    Article  CAS  Google Scholar 

  21. Allbritton, N. L., Meyer, T. & Stryer, L. Science 258, 1812–1815 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Andersen, P., Sundberg, S. H., Sveen, O. & Wigstrom, H. Nature 266, 736–737 (1977).

    Article  ADS  CAS  Google Scholar 

  23. McNaughton, B. L. & Barnes, C. A. J. comp. Neurol. 175, 439–454 (1977).

    Article  CAS  Google Scholar 

  24. Levy, W. B. & Steward, O. Brain Res. 175, 233–245 (1979).

    Article  CAS  Google Scholar 

  25. Levy, W. B. & Desmond, N. L. in Electrical Activity of the Archicortex (eds Buzsáki, G. & Vanderwolf, C. H.) (Akademiai Kiado, Budapest, 1985).

    Google Scholar 

  26. Neher, E. & Augustine, G. J. J. Physiol., Lond. 450, 273–301 (1992).

    Article  CAS  Google Scholar 

  27. Tank, D. W., Delaney, K. D. & Regehr, W. G. J. Neurosci. (in the press).

  28. Miller, S. G. & Kennedy, M. B. Cell 44, 861–870 (1986).

    Article  CAS  Google Scholar 

  29. Sobel, E. C. & Tank, D. W. Science 263, 823–826 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Yuste, R., Gutnick, M. J., Saar, D., Delaney, K. D. & Tank, D. W. Neuron 13, 23–43 (1994).

    Article  CAS  Google Scholar 

  31. Blanton, M. G., LoTurco, J. J. & Kriegstein, A. R. J. Neurosci. Meth. 30, 203–210 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuste, R., Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995). https://doi.org/10.1038/375682a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375682a0

  • Springer Nature Limited

This article is cited by

Navigation