Skip to main content

Calcium Transients in Single Dendrites and Spines of Pyramidal Neurons In Vitro

  • Protocol
Receptor and Ion Channel Detection in the Brain

Part of the book series: Neuromethods ((NM,volume 110))

  • 1288 Accesses

Abstract

Calcium levels within dendrites and spines rapidly change during synaptic activity and in response to action potential backpropagation following somatic firing. These calcium transients can be measured and quantified by a combination of whole-cell patch-clamp electrophysiology and two-photon calcium imaging methods using membrane-impermeable calcium-dependent indicator dyes. Such methods have been applied both in vivo in the intact brain and in vitro in acute brain slice preparations and neuronal cultures. Here, we describe a dual dye technique, using a calcium-dependent indicator in combination with a morphological calcium-independent marker dye, to measure action potential backpropagation in dendrites and spines. Calcium transients can be correlated with simultaneous electrical recordings made from the cell soma or dendrites to investigate, for example, modulation of both membrane voltage and intracellular calcium signals simultaneously at different spatial locations in the neuron or modulation by pharmacological ligands. We highlight the key advantages of this technique but also note the limitations and caveats of making dynamic measurements in small structures of living neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sjostrom PJ, Nelson SB (2002) Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 12(3):305–314

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy MB (1989) Regulation of neuronal function by calcium. Trends Neurosci 12(11):417–420

    Article  CAS  PubMed  Google Scholar 

  3. Sin WC et al (2002) Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419(6906):475–480

    Article  CAS  PubMed  Google Scholar 

  4. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70

    Article  CAS  PubMed  Google Scholar 

  5. Bengtson CP, Bading H (2012) Nuclear calcium signaling. Adv Exp Med Biol 970:377–405

    Article  CAS  PubMed  Google Scholar 

  6. Spruston N et al (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268(5208):297–300

    Article  CAS  PubMed  Google Scholar 

  7. Gasparini S et al (2007) Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons. J Physiol 580(Pt.3):787–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sterratt DC et al (2012) Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS Comput Biol 8(6):e1002545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Groen MR et al (2014) Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons. J Neurophysiol 112(2):287–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Koester HJ, Sakmann B (2000) Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J Physiol 529(Pt 3):625–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Waters J, Helmchen F (2004) Boosting of action potential backpropagation by neocortical network activity in vivo. J Neurosci 24(49):11127–11136

    Article  CAS  PubMed  Google Scholar 

  12. Rall W (1962) Theory of physiological properties of dendrites. Ann N Y Acad Sci 96:1071–1092

    Article  CAS  PubMed  Google Scholar 

  13. Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca(2+) ions in dendritic spines. Neuron 33(3):439–452

    Article  CAS  PubMed  Google Scholar 

  14. Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J 70(2):1069–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Maravall M et al (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J 78(5):2655–2667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Verhoog MB et al (2013) Mechanisms underlying the rules for associative plasticity at adult human neocortical synapses. J Neurosci 33(43):17197–17208

    Article  CAS  PubMed  Google Scholar 

  17. Larkum ME, Rioult MG, Luscher HR (1996) Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. J Neurophysiol 75(1):154–170

    CAS  PubMed  Google Scholar 

  18. Dawitz J et al (2011) Functional calcium imaging in developing cortical networks. J Vis Exp (56):3550. doi:10.3791/3550

  19. Kuenzi FM et al (2000) Reduced long-term potentiation in hippocampal slices prepared using sucrose-based artificial cerebrospinal fluid. J Neurosci Methods 100(1–2):117–122

    Article  CAS  PubMed  Google Scholar 

  20. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885

    Article  CAS  PubMed  Google Scholar 

  21. Kaiser KM, Zilberter Y, Sakmann B (2001) Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex. J Physiol 535(Pt 1):17–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chen TW et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 26(43):11001–11013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rhiannon M. Meredith or Martine R. Groen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Meredith, R.M., Groen, M.R. (2016). Calcium Transients in Single Dendrites and Spines of Pyramidal Neurons In Vitro. In: Luján, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 110. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3064-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3064-7_26

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3063-0

  • Online ISBN: 978-1-4939-3064-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics