Skip to main content
Log in

Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

EARTH scientists have long recognized1á€-4 that the soluble organic acids excreted by soil biota enhance rates of mineral weathering, thereby chemically stratifying the soil and affecting the biodegradation pathways of organic matter, including pollutants5. Multidentate organic ligands6,7 also exist in industrial waste waters8 and can enhance the mobility of heavy elements, including radionuclides9. Here we examine whether rate coefficients for ligand-promoted disolution of minerals can be predicted from existing studies of dissolved metal complexes. We have performed dissolution experiments on bunsenite (NiO) to compare with published studies of ligand exchange around dissolved Ni(II)á€-ligand complexes10á€-12. The hypothesis is confirmed with surprising detail: the dissolution rate coefficient increases with the number of ligand functional groups coordinated to the surface metal, as do the exchange rate coefficients10á€-12. Furthermore, we find that the dissolution rate coefficients can be predicted from the equilibrium constants for metal complexation in solution, indicating that the activated surface complexes resemble the corresponding dissolved complexes in important ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilgard, E. W. Soils: their Formation, Properties, Compositions and Relations to Climate and Plant Growth in the Humid and Arid Regions 19 (Macmillan, New York, 1914).

    Google Scholar 

  2. Bloomfield, C. J. Soil Sci. 4, 17–23 (1953).

    Article  CAS  Google Scholar 

  3. Powell, P. E., Cline, G. R., Reid, C. P. P. & Szanislo, P. J. Nature 287, 833–834 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Huang, W. H. & Keller, W. D. Nature 239, 149–151 (1972).

    ADS  CAS  Google Scholar 

  5. Lovley, D. R., Woodward, J. C. & Chapelle, F. H. Nature 370, 128–130 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Muir, J. W., Morrison, R. I., Brown, C. J. & Logan, J. J. Soil Sci. 15, 220–225 (1964).

    Article  CAS  Google Scholar 

  7. Drever, J. I. & Vance, G. F. in Organic Acids in Geological Processes (eds Pittman, E. D. & Lewan, M. D.) 138–161 (Springer, New York, 1993).

    Google Scholar 

  8. Francis, A. J. Experientia 46, 840–850 (1990).

    Article  CAS  Google Scholar 

  9. Means, J. L., Crerar, D. A. & Duguid, J. O. Science 200, 1477–1480 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Wilkens, R. G. Kinetics and Mechanism of Reactions of Transition Metal Complexes, (VCH, New York, 1991).

    Book  Google Scholar 

  11. Rowland, T. V. thesis, University of California at Berkeley (1975).

  12. Margerum, D. W., Cayley, G. R., Weatherburn, D. C. & Pagenkopf, D. K. Kinetics and Mechanisms of Complex Formation and Ligand Exchange. Ch. 1 (ACS Monogr. 174, Am. Chem. Soc. Washington DC, 1978).

    Google Scholar 

  13. Furrer, G. & Stumm, W. Geochim. cosmochim. Acta 50, 1847–1860 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Pohlman, A. A. & McColl, J. C. J. envir. Qual. 14, 86–92 (1986).

    Article  Google Scholar 

  15. Burgess, J. Metal Ions in Solution 333 (Ellis-Horwood, Chichester, 1990).

    Google Scholar 

  16. Martell, A. E. & Smith, R. M. Critical Stability Constants Vols 1–6 (Plenum, New York 1975–89).

    Google Scholar 

  17. Westrich, H. R., Cygan, R. T., Casey, W. H., Zemitis, C. & Arnold, G. W. Am. J. Sci. 293, 869–893 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Kummert, R. & Stumm, W. J. Colloid Interface Sci. 75, 373–385 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Casey, W. H. & Westrich, H. R. Nature 355, 157–159 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Oreskes, N., Shrader-Frechette, K. & Belitz, K. Science 263, 641–646 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Sverjensky, D. Nature 358, 310–313 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig, C., Casey, W. & Rock, P. Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes. Nature 375, 44–47 (1995). https://doi.org/10.1038/375044a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375044a0

  • Springer Nature Limited

This article is cited by

Navigation