Skip to main content
Log in

Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesioüstite

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE melting temperatures of minerals in the Mg–Fe–Si–O-system play a fundamental role in the chemical differentiation, rheology and geodynamics of the Earth's lower mantle. We have previously shown1 that the melting curve of (Mg, Fe)SiO3-perovskite—the dominant mineral in the lower mantle—is extremely steep, implying melting temperatures at the bottom of the lower mantle in excess of 7,000 K. The large difference between actual mantle temperatures and the melting temperature inferred from our experiments suggests that the viscosity of the lower mantle is much larger than that typically used in convection models2. Theoretical estimates of the melting temperature of MgO (refs 3–5) suggest even higher melting temperatures for (Mg, Fe)O-magnesiowiistite, the second most abundant mineral in the lower mantle. We show here, however, that the melting curves of these two minerals are flat compared to the perovskite melting curve, thus lowering the upper bounds for the solidus in the lowermost mantle to about 5,000 K. This reduces the estimate of the viscosity to more realistic levels but still rules out large-scale melting in the lower mantle. Because magnesiowiistite is slightly more dense than Mg–Fe–Si-perovskite due to iron partitioning, chemical segregation in the lower mantle cannot be excluded in regions where the local temperature exceeds the solidus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zerr, A. & Boehler, R. Science 262, 553–555 (1993).

    Article  ADS  CAS  Google Scholar 

  2. van Keken, P. E., Yuen, D. A. & van den Berg, A. P. Science 264, 1437–1439 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Gong, Z., Cohen, R. E. & Boyer, L. L. A. Rep. Director Geophys. Lab. 1990–1991 129–134 (Carnegie Instn. Wash., Washington DC, 1991).

  4. Jackson, I. Phys. Earth. planet. Inter. 14, 86–94 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Ohtani, E. Phys. Earth. planet. Inter. 33, 12–25 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Ito, E. & Katsura, T. in High-Pressure Research: Application to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) 315–322 (Terrapub, Tokyo/American Geophysical Union, Washington DC, 1992).

    Google Scholar 

  7. Kondo, K., Ahrens, T. J. & Sawaoka, A. J. appl. Phys. 54, 4382–4385 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Schmitt, D. R. & Ahrens, T. J. J. geophys. Res. 94, 5851–5871 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Boehler, R. Nature 363, 534–536 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Riley, B. Revue int. Hautes Temp. Refract. 3, 327–336 (1966).

    CAS  Google Scholar 

  11. Lindemann, F. A. Phys. Z. 11, 609–612 (1910).

    CAS  Google Scholar 

  12. Boehler, R. & Ramakrishnan, J. J. geophys. Res. 85, 6996–7002 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Kraut, E. A. & Kennedy, G. C. Phys. Rev. Lett. 16, 608–609 (1966).

    Article  ADS  CAS  Google Scholar 

  14. Kesson, S. E. & FitzGerald, J. D. Earth planet. Sci. Lett. 111, 229–240 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Boehler, R. Earth planet. Sci. Lett. 111, 217–227 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Weertmann, J. & Weertmann, J. R. A. Rev. Earth planet. Sci. 3, 293–315 (1975).

    Article  ADS  Google Scholar 

  17. Chopelas, A. & Boehler, R. Geophys. Res. Lett. 19, 1983–1986 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerr, A., Boehler, R. Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesioüstite. Nature 371, 506–508 (1994). https://doi.org/10.1038/371506a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371506a0

  • Springer Nature Limited

This article is cited by

Navigation