Skip to main content
Log in

Femtosecond solvation dynamics of water

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE timescale of the response of solvent molecules to electronic rearrangement of solute molecules has a critical influence on the rates of chemical reactions in liquids1–10. In particular, if the solvent cannot adapt quickly enough to this rearrangement as the reactants pass through the transition state, the evolving products may recross the free-energy barrier, reducing the reaction rate. Computer simulations have shown11–18 that the response of a solvent to a change in solute charge distribution is strongly bimodal: there is an initial ultrafast response owing to inertial (mainly libra-tional) motions of the solvent molecules, followed by a slow component owing to diffusive motions. Water seems to be by far the 'fastest' solvent studied so far: simulations predict that well over half of the solvation response for atomic solutes is inertial, happening on a timescale of about 20 femtoseconds12,13. The presence of this ultrafast component implies that solvent friction plays an important role in many aqueous charge-transfer processes9,10,19–21. Experimental verification of this prediction has been lacking, however, in part because of the difficulty of obtaining sufficient time resolution. Here we present experimental measurements of the ultrafast solvation dynamics of a coumarin salt in water. When considered in conjunction with computer simulations, our results demonstrate that a solvent response on a timescale faster than 50 fs can dominate aqueous solvation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hynes, J. T. in Ultrafast Dynamics of Chemical Systems (ed. Simon, J. D.) 345–381 (Kluwer, Dordrecht, 1994).

    Book  Google Scholar 

  2. Gertner, B. J., Whitnell, R. M., Wilson, K. R. & Hynes, J. T. J. Am. chem. Soc. 113, 74–87 (1991).

    Article  CAS  Google Scholar 

  3. Berne, B. J., Borkovec, M. & Straub, J. J. phys. chem. 92, 3711–3725 (1988).

    Article  CAS  Google Scholar 

  4. Frauenfelder, H. & Wolynes, P. G. Science 229, 337–345 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Maroncelli, M., Maclnnis, J. & Fleming, G. R. Science 243, 1674–1681 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Barbara, P. F. & Jarzeba, W. Adv. Photochem. 15, 1–68 (1990).

    CAS  Google Scholar 

  7. Maroncelli, M. J. molec. Liq. 57, 1–37 (1993).

    Article  CAS  Google Scholar 

  8. Bagchi, B. & Chandra, A. Adv. chem. Phys. 80, 1–126 (1991).

    CAS  Google Scholar 

  9. Weaver, M. J. Chem. Rev. 92, 463–480 (1992).

    Article  CAS  Google Scholar 

  10. Heitele, H. Angew Chem. int. Edn engl. 32, 359–377 (1993).

    Article  Google Scholar 

  11. Impey, R. W., Madden, P. A. & McDonald, I. R. Molec. Phys. 46, 513–539 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Maroncelli, M. & Fleming, G. R. J. chem. Phys. 89, 5044–5069 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Bader, J. S. & Chandler, D. Chem. Phys. Lett. 157, 501–504 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Maroncelli, M. J. chem. Phys. 94, 2084–2103 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Carter, E. A. & Hynes, J. T. J. chem. Phys. 94, 5961–5979 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Fonseca, T. & Ladanyi, B. M. J. phys. Chem. 95, 2116–2119 (1991).

    Article  CAS  Google Scholar 

  17. Muin̄o, P. L. & Callis, P. R. J. chem. Phys. 100, 4093–4109 (1994).

    Article  ADS  Google Scholar 

  18. Barnett, R. B., Landman, U. & Nitzan, A. J. chem. Phys. 90, 4413–4422 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Smith, B. B., Staib, A. & Hynes, J. T. Chem. Phys. 176, 521–537 (1993).

    Article  CAS  Google Scholar 

  20. Bader, J. S., Kuharski, R. A. & Chandler, D. J. chem. Phys. 93, 230–236 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Song, X. & Marcus, R. A. J. chem. Phys. 99, 7768–7773 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Jarzeba, W., Walker, G. C., Johnson, A. E., Kahlow, M. & Barbara, P. F. J. phys. Chem. 92, 7039–7041 (1988).

    Article  CAS  Google Scholar 

  23. Rosenthal, S. J., Jimenez, R., Fleming, G. R., Kumar, P. V. & Maroncelli, M. J. molec. Liq. (in the press).

  24. Maroncelli, M., Kumar, V. P. & Papazyan, A. J. phys. Chem. 917, 13–17 (1993).

    Article  Google Scholar 

  25. Roy, S. & Bagchi, B. J. chem. Phys. 99, 9938–9943 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Raineri, F. O., Resat, H., Perng, B.-C., Hirata, F. & Friedman, H. L. J. chem. Phys. 100, 1477–1491 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Stratt, R. & Cho, M. J. chem. Phys. 100, 6700–6708 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Fee, R. S. & Maroncelli, M. Chem. Phys. (in the press).

  29. Guillot, B. J. chem. Phys. 95, 1543–1551 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Beredensen, H. J. C., Grigera, J. R. & Straatsma, T. P. J. phys. Chem. 91, 6269–6271 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez, R., Fleming, G., Kumar, P. et al. Femtosecond solvation dynamics of water. Nature 369, 471–473 (1994). https://doi.org/10.1038/369471a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369471a0

  • Springer Nature Limited

This article is cited by

Navigation