Skip to main content

Advertisement

Log in

Soil acidification and nitrogen saturation from weathering of ammonium-bearing rock

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 26 May 1994

Abstract

THE origin of small regions of extremely acidic (pH<4.5) soils in the Klamath mountains of northern California has long been a mystery. These acidic regions are devoid of coniferous vegetation, although surrounded by healthy coniferous forest. Here we show that the extreme soil acidification is caused by nitrogen inputs from ammonium-containing bedrock. Analyses of soil solution composition and bedrock mineralogy reveal that oxidation of ammonium released from the mica schist bedrock generates high levels of nitric acid. The consequent acidity mobilizes potentially toxic levels of aluminium and causes intense leaching of nutrient cations. In the adjacent healthy forest, plant uptake of nitrate attenuates these effects. We suggest that a natural perturbation (for example a small forest fire) caused initial loss of vegetation from the barren regions. We also suggest that subsequent erosion led to serious nutrient depletion of these soils, and that extreme acidification, potentially toxic levels of aqueous aluminium and nutrient deficiencies resulting from cation leaching played a significant role in preventing regrowth. These results show that geological nitrogen, commonly overlooked in biogeochemical cycling but known to be present in appreciable quantities in certain rocks1–8, may represent a large and reactive pool which can have significant ecological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stevenson, F. J. Geochim cosmochim Acta 26, 797–809 (1962).

    Article  ADS  CAS  Google Scholar 

  2. Higashi, S. Mineralog. J. 9, 16–27 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Strathouse, S. M. & Sposito, G. California Agric. 30, 20–22 (1980).

    Google Scholar 

  4. Sterne, E. J., Reynolds, R. C. & Zantop, H. Clays Clay Miner. 30, 161–166 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Juster, T. C., Brown, P. E. & Bailey S. W. Am. Mineralog. 72, 555–565 (1987).

    CAS  Google Scholar 

  6. Kawano, M. & Tomita K. Mineralog. J. 15, 19–31 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Williams, L. B. & Ferrell, R. E. Clays Clay Miner. 39, 400–408 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Williams, L. B., Wilcoxon, B. R., Ferrell, R. E. & Sassen, R. Appl. Geochem. 7, 123–134 (1992).

    Article  CAS  Google Scholar 

  9. Blake, M. C., Irwin, W. P. & Coleman, R. G. Prof. Paper 575-C, 1–9 (US Geol. Surv, Washington DC, 1967).

  10. Bishop, D. G. Geology, 5, 595–599 (1977).

    Article  ADS  Google Scholar 

  11. Lanphere, M. A., Blake, M. C. & Irwin, W. P. Am. J. Sci. 278, 798–815 (1978).

    Article  ADS  Google Scholar 

  12. Parkinson, J. A. & Allen, S. E. Commun. Soil Sci. Plant Nutr. 6, 1–11 (1975).

    Article  CAS  Google Scholar 

  13. Dahlgren, R. A. Commun. Soil Sci. Plant Nutr. 24, 1783–1794 (1993).

    Article  CAS  Google Scholar 

  14. Van Breemen, N., Mulder, J. & Driscoll, C. T. Pl. Soil 75, 283–308 (1983).

    Article  CAS  Google Scholar 

  15. Driscoll, C. T. Int. J. envir. analyt. Chem. 16, 267–284 (1984).

    Article  CAS  Google Scholar 

  16. Hargrove, W. L. & Thomas, G. W. in Chemistry in the Soil Environment (eds Dowdy, R. H., Ryan, J. A., Volk, V. V. & Baker, D. E.) 151–166 (Am. Soc. Agronomy, Madison, Wisconsin, 1981).

    Google Scholar 

  17. Haug, A. CRC Crit. Rev. Plant Sci. 1, 345–373 (1984).

    Article  CAS  Google Scholar 

  18. Bartlett, R. J. & Riego, D. C. Pl. Soil 37, 419–423 (1972).

    Article  CAS  Google Scholar 

  19. Dahlgren, R. A. & Ugolini, F. C. Soil Sci. Soc. Am. J. 53, 559–566 (1989).

    Article  ADS  CAS  Google Scholar 

  20. De Boer, W., Gunnewiek, P. J. A. K., Veenhuis, M., Bock, E. & Laanbroek, H. J. Appl. envir. Microbiol. 57, 3600–3604 (1991).

    CAS  Google Scholar 

  21. Fanning, D. S., Keramidas, V. Z. & El-Desoky, M. A. in Minerals in Soil Environments 2nd edn (eds Dixon, J. B. & Weed, S. B.) 551–634 (Soil Sci. Soc. Am., Madison, Wisconsin, 1989).

    Google Scholar 

  22. Cassman, K. G. & Munns, D. N. Soil Sci. Soc. Am. J. 44, 1233–1237 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Johnson, D. W. J. Envir. Qual. 21, 1–12 (1992).

    Article  Google Scholar 

  24. Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. W. & Pierce, R. S. Ecol. Monogr. 40, 23–47 (1970).

    Article  Google Scholar 

  25. Vitousek, P. M., Gosz, J. R., Grier, C. C., Melillo, J. M. & Reiners, W. A. Ecol. Monogr. 52, 155–177 (1982).

    Article  CAS  Google Scholar 

  26. McAvoy, D. C., Santore, R. C., Shosa, J. D. & Driscoll, C. T. Soil Sci. Soc. Am. J. 56, 449–455 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlgren, R. Soil acidification and nitrogen saturation from weathering of ammonium-bearing rock. Nature 368, 838–841 (1994). https://doi.org/10.1038/368838a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368838a0

  • Springer Nature Limited

This article is cited by

Navigation