Skip to main content

Advertisement

Log in

Trapped electron acceleration by a laser-driven relativistic plasma wave

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE aim of new approaches for high-energy particle acceleration1 is to push the acceleration rate beyond the limit (∼100 MeV m−1) imposed by radio-frequency breakdown in conventional accelerators. Relativistic plasma waves, having phase velocities very close to the speed of light, have been proposed2–6 as a means of accelerating charged particles, and this has recently been demonstrated7,8. Here we show that the charged particles can be trapped by relativistic plasma waves—a necessary condition for obtaining the maximum amount of energy theoretically possible for such schemes. In our experiments, plasma waves are excited in a hydrogen plasma by beats induced by two collinear laser beams, the difference in whose frequencies matches the plasma frequency. Electrons with an energy of 2 MeV are injected into the excited plasma, and the energy spectrum of the exiting electrons is analysed. We detect electrons with velocities exceeding that of the plasma wave, demonstrating that some electrons are 'trapped' by the wave potential and therefore move synchronously with the plasma wave. We observe a maximum energy gain of 28 MeV, corresponding to an acceleration rate of about 2.8 GeV m−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sessler, A. M. Physics Today 41, 26–34 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Dawson, J. M. Scient. Am. 260, 54–61 (1989).

    Article  Google Scholar 

  3. Trajima, T. & Dawson, J. M. Phys. Rev. Lett. 43, 267–270 (1979).

    Article  ADS  Google Scholar 

  4. Sprangle, P., Esarey, E., Ting, A. & Joyce, G. Appl. Phys. Lett. 53, 2146–2148 (1988).

    Article  ADS  Google Scholar 

  5. Chen, P., Dawson, J. M., Huff, R. W. & Katsouleas, T. Phys. Rev. Lett. 54, 693–696 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Joshi, C. et al. Nature 311, 525–529 (1984).

    Article  ADS  Google Scholar 

  7. Clayton, C. E. et al. Phys. Rev. Lett. 70, 37–40 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Kitagawa, Y. et al. Phys. Rev. Lett. 68, 48–51 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Clayton, C. E., Joshi, C., Darrow, C. & Umstadter, D. Phys. Rev. Lett. 54, 2343–2346 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Amiranoff, F. et al. Phys. Rev. Lett. 68, 3710–3713 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Dangor, A. E., Dymoke-Bradshaw, A. K. L. & Dyson, A. E. Physica Scripta T30, 107–109 (1990).

    Article  Google Scholar 

  12. Williams, R. L., Clayton, C. E., Joshi, C., Katsouleas, T. & Mori, W. B. Lasers Particle Beams 8, 427–449 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Joshi, C. et al. Advanced Accelerator Concepts 379–410 (AIP Conf. Proc. No. 279, Amer. Inst. Phys., New York, 1993).

    Google Scholar 

  14. Sheffield, J. Plasma Scattering of Electromagnetic Radiation (Academic, New York. 1975).

    Google Scholar 

  15. Clayton, C. E., Darrow, C. & Joshi, C. Appl. Opt. 24, 2823–2826 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Jackson, E. A. Phys. Fluids 3, 831–833 (1960).

    Article  ADS  Google Scholar 

  17. Martin, F., Johnston, T. W. & Ebrahim, N. Phys. Rev. Lett. 55, 1651 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Clayton, C. E., Joshi, C., Darrow, C. & Umstadter, D. Phys. Rev. Lett. 55, 1652 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Clayton, C. E. et al. Phys. Plasmas (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Everett, M., Lal, A., Gordon, D. et al. Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature 368, 527–529 (1994). https://doi.org/10.1038/368527a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368527a0

  • Springer Nature Limited

This article is cited by

Navigation