Skip to main content
Log in

Electron Acceleration in the Relativistic Self-Trapping Regime of Extreme Light

  • PARTICLE ACCELERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract—

We demonstrate the possibility of using an XCELS [1] laser pulse propagating in a plasma of near-critical density in the regime of relativistic self-trapping to accelerate a large number of electrons with an energy of about 0.2 to 2 GeV with a record charge, almost up to 0.1 μC. An even greater charge is concentrated in electrons with an energy of ∼100 MeV. This opens up new prospects for using such electron bunches to produce ultra-high-brightness sources of gamma radiation and to obtain a high yield of products of photonuclear reactions and nuclear cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Khazanov, E. et al., High Power Laser Sci. Eng., 2023, pp. 1–77. https://doi.org/10.1017/hpl.2023.69

  2. Kim, H.T., Pae, K.H., Cha, H.J., Kim, I.J., Yu, T.J., Sung, J.H., Lee, S.K., Jeong, T.M., and Lee, J., Phys. Rev. Lett., 2013, vol. 111, p. 165002.

  3. Leemans, W.P., Gonsalves, A.J., Mao, H.S., Nakamura, K., Benedetti, C., Schroeder, C.B., Tóth, Cs., Daniels, J., Mittelberger, D.E., Bulanov, S.S., Vay, J.-L., Geddes, C.G.R., and Esarey, E., Phys. Rev. Lett., 2014, vol. 113, p. 245002.

  4. Gonsalves, A.J., Nakamura, K., Daniels, J., Benedetti, C., Pieronek, C., de Raadt, T.C.H., Steinke, S., Bin, J.H., Bulanov, S.S., van Tilborg, J., Geddes, C.G.R., Schroeder, C.B., Tóth, Cs., Esarey, E., Swanson, K., Fan-Chiang, L., Bagdasarov, G., Bobrova, N., Gasilov, V., Korn, G., Sasorov, P., and Leemans, W.P., Phys. Rev. Lett., 2019, vol. 122, p. 084801.

  5. Tajima, T. and Dawson, J.M., Phys. Rev. Lett., 1979, vol. 43, p. 267.

    Article  ADS  Google Scholar 

  6. Esarey, E., Sprangle P., Krall, J., and Ting, A., Rev. Mod. Phys., 2009, vol. 81, p. 1229.

    Article  ADS  Google Scholar 

  7. Pukhov, A. and Meyer-ter-Vehn, J., Appl. Phys. B, 2002, vol. 74, p. 355.

    Article  ADS  Google Scholar 

  8. Pukhov, A., Gordienko, S., Kiselev, S., and Kostyukov, I., Plasma Phys. Control. Fusion, 2004, vol. 46, p. B179.

    Article  Google Scholar 

  9. Lobok, M.G., Brantov, A.V., Gozhev, D.A., and Bychenkov, V.Yu., Plasma Phys. Control. Fusion, 2018, vol. 60, p. 084010.

  10. Bychenkov, V.Yu., Lobok, M.G., Kovalev, V.F., and Brantov, A.V., Plasma Phys. Control. Fusion, 2019, vol. 61, p. 124004.

  11. Kovalev, V.F. and Bychenkov, V.Yu., Phys. Rev. E., 2019, vol. 99, p. 043201.

  12. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Phys. Plasmas, 2019, vol. 26, p. 123107.

  13. Kovalev, V.F. and Bychenkov, V.Yu., Radiophys. Quantum Electron., 2021, vol. 63, p. 742.

    Article  ADS  Google Scholar 

  14. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Phys. Plasmas, 2020, vol. 27, p. 123103.

  15. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Plasma Phys. Control. Fusion, 2022, vol. 64, p. 054002.

  16. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Plasma Phys. Rep., 2022, vol. 48, p. 591.

    Article  ADS  Google Scholar 

  17. Talanov, V.I., Russ. J. Izv. Vuzov, Radiophys., 1964, vol. 7, p. 564.

    Google Scholar 

  18. Chiao, R.Y., Garmire, E., and Townes, C., Phys. Rev. Lett., 1964, vol. 13, p. 479.

    Article  ADS  Google Scholar 

  19. Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V., Sov. Phys. JETP, 1966, vol. 23, p. 1025.

    ADS  Google Scholar 

  20. Zaloznaya, E.D., Dormidonov, A.E., Kompanets, V.O., Chekalin, S.V., and Kandidov, V.P., JETP Lett., 2021, vol. 113, p. 787.

    Article  Google Scholar 

  21. Bychenkov, V.Yu. and Lobok, M.G., JETP Lett., 2021, vol. 114, p. 571.

    Article  ADS  Google Scholar 

  22. Gordienko, S. and Pukhov, A., Phys. Plasmas, 2005, vol. 12, p. 043109.

  23. Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A., and Silva, L.O., Phys. Rev. Accel. Beams, 2007, vol. 10, p. 061301.

  24. Masson-Laborde, P.E., Mo, M.Z., Ali, A., Fourmaux, S., Lassonde, P., Kieffer, J.C., Rozmus, W., Teychenné, D., and Fedosejevs, R., Phys. Plasmas, 2014, vol. 21, p. 123113.

  25. Rosmej, O.N., Andreev, N.E., Zaehter, S., Zahn, N., Christ, P., Borm, B., Radon, T., Sokolov, A., Pugachev, L.P., Khaghani, D., Horst, F., Borisenko, N.G., Sklizkov, G., and Pimenov, V.G., New J. Phys., 2019, vol. 21, p. 043044.

  26. Lobok, M.G. and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 7.

  27. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 7.

  28. Brantov, A.V., Lobok, M.G., and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 7.

  29. Vais, O.E., Lobok, M.G., and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 7.

Download references

Funding

The work is supported by the Ministry of Science and Higher Education of the Russian Federation under agreement no. 075-15-2021-1361 and by the Russian Foundation for Basic Research under grant RFFI-ROSATOM no. 20-21-00023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Lobok.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Sventsitsky

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychenkov, V.Y., Lobok, M.G. Electron Acceleration in the Relativistic Self-Trapping Regime of Extreme Light. Bull. Lebedev Phys. Inst. 50 (Suppl 6), S706–S714 (2023). https://doi.org/10.3103/S1068335623180045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623180045

Keywords:

Navigation