Skip to main content
Log in

Generalized synthesis of periodic surfactant/inorganic composite materials

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE recent synthesis of silica-based mesoporous materials1,2 by the cooperative assembly of periodic inorganic and surfactant-based structures has attracted great interest because it extends the range of molecular-sieve materials into the very-large-pore regime. If the synthetic approach can be generalized to transition-metal oxide mesostructures, the resulting nanocomposite materials might find applications in electrochromic or solid-electrolyte devices3,4, as high-surface-area redox catalysts5 and as substrates for biochemical separations. We have proposed recently6 that the matching of charge density at the surfactant/inorganic interfaces governs the assembly process; such co-organization of organic and inorganic phases is thought to be a key aspect of biomineralization7. Here we report a generalized approach to the synthesis of periodic mesophases of metal oxides and cationic or anionic surfactants under a range of pH conditions. We suggest that the assembly process is controlled by electrostatic complementarity between the inorganic ions in solution, the charged surfactant head groups and—when these charges both have the same sign—inorganic counterions. We identify a number of different general strategies for obtaining a variety of ordered composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Beck, J. S. et al. J. Am. chem. Soc. 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  3. Lampert, C. M. & Granqvist, C. G. in Large-Area Chromogenics: Materials and Devices for Transmittance Control (eds Lampert, C. M. & Granqvist, C. G.) 2–19 (SPIE Optical Engineering, Washington DC, 1990).

    Google Scholar 

  4. Dautremont-Smith, W. C. Displays 3, 3–22 (1982).

    Article  CAS  Google Scholar 

  5. Parton, R. F., Jacobs, J. M., van Ooteghem, H. & Jacobs, P. A. Zeolites as Catalysts. Sorbents and Detergent Builders (eds Karge, H. G. & Weitkamp, J.) 211–212 (Elsevier, Amsterdam, 1989).

    Google Scholar 

  6. Monnier, A. et al. Science 261, 1299–1303 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Mann, S. Nature 365, 499–505 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Inagaki, S., Fukushima, Y. & Kuroda, K. J. chem. Soc., chem Commun. 680–682 (1993).

  9. Iler, R. K. The Chemistry of Silica (Wiley, New York, 1979).

    Google Scholar 

  10. Brinker, C. J. & Scherer, G. W. Sol-Gel Science 97–233 (Academic, San Diego, 1990).

    Google Scholar 

  11. Hyde, S. T. Pure appl. Chem. 64, 1617–1622 (1992).

    Article  CAS  Google Scholar 

  12. Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. J. chem. Soc., Faraday Trans. 2 72, 1525–1568 (1976).

    Article  CAS  Google Scholar 

  13. Auvray, X. et al. Langmuir 9, 444–448 (1993).

    Article  CAS  Google Scholar 

  14. Vargas, R., Mariani, P., Gulik, A. & Luzzati, V. J. molec. Biol. 225, 137–145 (1992).

    Article  CAS  Google Scholar 

  15. Charvolin, J. & Sadoc, J. F. J. Phys. Paris 49, 521–526 (1988).

    Article  Google Scholar 

  16. Seddon, J. M. & Templer, R. H. Phil. Trans. R. Soc. A344, 377–401 (1993).

    ADS  CAS  Google Scholar 

  17. Fontell, K. Colloid Polym. Sci. 268, 264–285 (1990).

    Article  CAS  Google Scholar 

  18. Whitehurst, D. D. US Patent No. 5143879 (1992).

  19. Nenoff, T. M., Harrison, W. T. A., Gier, T. E., Galabrese, J. C. & Stucky, G. D. J. Solid St. Chem. 107, 285–295 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Baes, C. F. Jr & Mesmer, R. E. The Hydrolysis of Cations 287–294 (Wiley International, New York, 1976).

    Google Scholar 

  21. Baral, S. & Schoen, P. Chem. Mater. 5, 145–147 (1993).

    Article  CAS  Google Scholar 

  22. Archibald, D. D. & Mann, S. Nature 364, 430–433 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Friedbacher, G., Hansma, P. K., Ramli, E. & Stucky, G. D. Science 253, 1261–1263 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Morse, D. E., Cariolou, M. A., Stucky, G. D. & Hansma, P. Mat. Res. Soc. Symp. Proc. 292, 59–67 (1993).

    Article  CAS  Google Scholar 

  25. Rosen, M. J. Surfactants and Interfacial Phenomena 108–142 (Wiley, New York, 1989).

    Google Scholar 

  26. Lippmaa, E., Magi, M., Sarnoson, A., Engelhardt, G. & Grimmer, A. R. J. Am. chem. Soc. 102, 4889–4893 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, Q., Margolese, D., Ciesla, U. et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368, 317–321 (1994). https://doi.org/10.1038/368317a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368317a0

  • Springer Nature Limited

This article is cited by

Navigation