Skip to main content
Log in

Target recognition and visual maps in the thalamus of achiasmatic dogs

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

VISION is dependent on ordered neuronal representations or maps of visual space. These maps depend on precise connections between retinal axons and their targets cells. In mammals, nerve fibres from right and left eyes produce congruent maps of contralateral visual space in adjacent layers of the lateral geniculate nucleus (LGN)1. We have identified an autosomal recessive mutation in Belgian sheepdogs2,3 that eliminates the optic chiasm. In these mutants, all retinal axons project into the ipsilateral optic tract, including those originating in the nasal hemiretina that normally cross midline. These animals exhibit a pronounced horizontal nystagmus4,5. The abnormal ipsilaterally directed nasal fibres innervate the LGN as if they had successfully crossed the midline, terminating in the appropriate layer of the nucleus. As a consequence, the LGN contains non-congruent, mirror-image maps of visual space in adjacent layers. These results show that there is a robust affinity between nasal and temporal retinal axons and specific LGN layers even when all retinal axons originate from a single eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaas, J. H., Guillery, R. W. & Allman, J. M. Brain Behav. Evol. 6, 253–299 (1972).

    Article  CAS  Google Scholar 

  2. Williams, R. W., Garraghty, P. E. & Goldowitz, D. Soc. Neurosci. Abstr. 17, 187 (1991).

    Google Scholar 

  3. Hogan, D., Garraghty, P. E. & Williams, R. W. Soc. Neurosci. Abstr. 19, 524 (1993).

    Google Scholar 

  4. Dell'Osso, L. F. Curr. Neuro. Ophthalmol. 1, 139–172 (1988).

    Google Scholar 

  5. Williams, R. W. & Dell'Osso, L. F. Invest. Ophthalmol. Vis. Sci. 34, 1125 (1993).

    Google Scholar 

  6. Rioch, D. M. J. comp. Neurol. 49, 1–119 (1929).

    Article  Google Scholar 

  7. Sanderson, K. J. J. comp. Neurol. 143, 101–118 (1971).

    Article  CAS  Google Scholar 

  8. Apkarian, P., Bour, L. & Barth, P. G. Eur. J. Neurosci. (in the press).

  9. Guillery, R. W. Trends Neurosci. 9, 364–367 (1986).

    Article  Google Scholar 

  10. Stone, J., Campion, J. E. & Leicester, J. J. comp. Neurol. 180, 783–798 (1978).

    Article  CAS  Google Scholar 

  11. Cooper, M. L. & Pettigrew, J. D. J. comp. Neurol. 187, 313–348 (1979).

    Article  CAS  Google Scholar 

  12. Leventhal, A. G. & Creel, D. J. J. Neurosci. 5, 795–807 (1985).

    Article  CAS  Google Scholar 

  13. Balkema, G. W. & Dräger, U. C. Vis. Neurosci. 4, 595–604 (1990).

    Article  CAS  Google Scholar 

  14. Hubel, D. H. & Wiesel, T. N. J. Physiol. 218, 33–62 (1971).

    Article  CAS  Google Scholar 

  15. Guillery, R. W. & Kaas, J. H. J. comp. Neurol. 143, 73–100 (1971).

    Article  CAS  Google Scholar 

  16. Huang, K. & Guillery, R. W. Devl Brain Res. 20, 213–220 (1985).

    Article  Google Scholar 

  17. Guillery, R. W., Lamantia, S. A., Robson, J. A. & Huang, K. J. Neurosci. 5, 1370–1379 (1985).

    Article  CAS  Google Scholar 

  18. Rakic, P. Science 214, 928–931 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Chalupa, L. M. & Williams, R. W. Hum. Neurobiol. 3, 103–107 (1984).

    CAS  PubMed  Google Scholar 

  20. Garraghty, P. E., Shatz, C. J. & Sur, M. Vis. Neurosci. 1, 93–102 (1988).

    Article  CAS  Google Scholar 

  21. Berman, N. & Cynader, M. J. Physiol. 224, 363–389 (1972).

    Article  CAS  Google Scholar 

  22. Walsh, C., Polley, E. H., Hickey, T. L. & Guillery, R. W. Nature 302, 611–614 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Sperry, R. W. Proc. natn. Acad. Sci. U.S.A. 50, 703–710 (1963).

    Article  ADS  CAS  Google Scholar 

  24. Bonhoeffer, F. & Huf, F. Nature 315, 409–410 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, R., Hogan, D. & Garraghty, P. Target recognition and visual maps in the thalamus of achiasmatic dogs. Nature 367, 637–639 (1994). https://doi.org/10.1038/367637a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367637a0

  • Springer Nature Limited

This article is cited by

Navigation