Skip to main content

Abstract

The cerebellum receives substantial input from visual and eye movement-related areas by way of the pons. These signals are used to guide and refine motor behavior and to establish spatial orientation. Accordingly, damage to the cerebellum can lead to imprecise eye movements and deficits in visual perception. Here we discuss cerebro-cerebellar circuits supporting vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen RG, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J Neurosci 10:1176–1196

    CAS  PubMed  Google Scholar 

  • Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RG (1991a) Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol 66:1095–1108

    CAS  PubMed  Google Scholar 

  • Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RG (1991b) Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J Neurophysiol 66:1109–1124

    CAS  PubMed  Google Scholar 

  • Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19:10931–10939

    CAS  PubMed  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feed forward movement control. Curr Opin Neurobiol 16:645–649

    Article  CAS  PubMed  Google Scholar 

  • Bastian AJ (2011) Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol 21:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, Leggio M, Mattingley JB, Molinari M, Moulton EA et al (2015) Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14:197–220

    Article  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734

    CAS  PubMed  Google Scholar 

  • Cooper MH, Fox CA (1976) The basilar Pontine gray in the adult monkey (Macaca mulatta): a Golgi study. J Comp Neurol 168:145–173

    Article  Google Scholar 

  • Deluca C, Golzar A, Santandrea E, Gerfo Lo E, Eštočinová J, Moretto G, Fiaschi A, Panzeri M, Mariotti C, Tinazzi M et al (2014) The cerebellum and visual perceptual learning: evidence from a motion extrapolation task. Cortex 58:52–71

    Article  PubMed  Google Scholar 

  • Dursteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60:940–965

    CAS  PubMed  Google Scholar 

  • Glickstein DM (2013) Visual circuits from cerebral cortex to cerebellum; the link through pons. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N (eds) Handbook of the cerebellum and cerebellar disorders. Springer, Dordrecht, pp 469–478

    Chapter  Google Scholar 

  • Glickstein M, May JG, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359

    Article  CAS  PubMed  Google Scholar 

  • Golla H, Thier P, Haarmeier T (2005) Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain 128:1525–1535

    Article  PubMed  Google Scholar 

  • Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P (2008) Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci 27:132–144

    Article  PubMed  Google Scholar 

  • Gottlieb JP, MacAvoy MG, Bruce CJ (1994) Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field. J Neurophysiol 72:1634–1653

    CAS  PubMed  Google Scholar 

  • Haarmeier T, Thier P (1999) Impaired analysis of moving objects due to deficient smooth pursuit eye movements. Brain 122(Pt 8):1495–1505

    Article  PubMed  Google Scholar 

  • Haarmeier T, Bunjes F, Lindner A, Berret E, Thier P (2001) Optimizing visual motion perception during eye movements. Neuron 32:527–535

    Article  CAS  PubMed  Google Scholar 

  • Händel B, Thier P, Haarmeier T (2009) Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci 29:15126–15133

    Article  PubMed  Google Scholar 

  • Heinen SJ (1995) Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements. Exp Brain Res 104:357–361

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2005) Bases and implications of learning in the cerebellum – adaptive control and internal model mechanism. In: Creating coordination in the cerebellum. Progress in brain research. Amsterdam, Boston: Elsevier, pp 95–109

    Google Scholar 

  • Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    Article  CAS  PubMed  Google Scholar 

  • Jokisch D, Troje NF, Koch B, Schwarz M, Daum I (2005) Differential involvement of the cerebellum in biological and coherent motion perception. Eur J Neurosci 21:3439–3446

    Article  PubMed  Google Scholar 

  • Kawano K, Shidara M, Watanabe Y, Yamane S (1994) Neural activity in cortical area MST of alert monkey during ocular following responses. J Neurophysiol 71:2305–2324

    CAS  PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119(Pt 4):1183–1198

    Article  PubMed  Google Scholar 

  • Matano S, Stephan H, Baron G (1985) Volume comparisons in the cerebellar complex of primates. I Ventral pons. Folia Primatol 44:171–181

    Article  CAS  PubMed  Google Scholar 

  • May JG, Keller EL, Suzuki DA (1988) Smooth-pursuit eye movement deficits with chemical lesions in the dorsolateral pontine nucleus of the monkey. J Neurophysiol 59:952–977

    CAS  PubMed  Google Scholar 

  • Nawrot M, Rizzo M (1995) Motion perception deficits from midline cerebellar lesions in human. Vision Res 35:723–731

    Article  CAS  PubMed  Google Scholar 

  • Newsome WT, Wurtz RH (1988) Probing visual cortical function with discrete chemical lesions. Trends Neurosci 11:394–400

    Article  CAS  PubMed  Google Scholar 

  • Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol 60:604–620

    CAS  PubMed  Google Scholar 

  • Rosina A, Provini L, Bentivoglio M, Kuypers HGJM (1980) Ponto-neocerebellar axonal branching as revealed by double fluorescent retrograde labeling technique. Brain Res 195:461–466

    Article  CAS  PubMed  Google Scholar 

  • Roth MJ, Synofzik M, Lindner A (2013) The cerebellum optimizes perceptual predictions about external sensory events. Curr Biol 23:930–935

    Article  CAS  PubMed  Google Scholar 

  • Schlag J, Schlag-Rey M (1985) Unit activity related to spontaneous saccades in frontal dorsomedial cortex of monkey. Exp Brain Res 58:208–211

    Article  CAS  PubMed  Google Scholar 

  • Schlag J, Schlag-Rey M (1987) Evidence for a supplementary eye field. J Neurophysiol 57:179–200

    CAS  PubMed  Google Scholar 

  • Straube A, Deubel H, Ditterich J, Eggert T (2001) Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology 57:2105–2108

    Article  CAS  PubMed  Google Scholar 

  • Sultan F, Augath M, Hamodeh S, Murayama Y, Oeltermann A, Rauch A, Thier P (2012) Unravelling cerebellar pathways with high temporal precision targeting motor and extensive sensory and parietal networks. Nat Commun 3:924

    Article  PubMed  Google Scholar 

  • Takagi M, Zee DS, Tamargo RJ (2000) Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol 83:2047–2062

    CAS  PubMed  Google Scholar 

  • Thier P (2011) The oculomotor cerebellum. The Oxford handbook of eye movements. Oxford: Oxford University Press, Oxford

    Google Scholar 

  • Thier P, Andersen RA (1997) Multiple parietal ‘eye fields’: insights from electrical microstimulation. In: Thier P, Karnath H-O (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg/Germany, pp 95–108

    Google Scholar 

  • Thier P, Andersen RG (1998) Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. J Neurophysiol 80:1713–1735

    CAS  PubMed  Google Scholar 

  • Thier P, Erickson RG (1992) Responses of visual‐tracking neurons from cortical area MST‐I to visual, eye and head motion. Eur J Neurosci 4:539–553

    Article  PubMed  Google Scholar 

  • Thier P, Möck M (2006) The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis. In: Neuroanatomy of the oculomotor system. Progress in brain research. Elsevier, Amsterdam/Oxford, pp 293–320

    Google Scholar 

  • Thier P, Haarmeier T, Treue S, Barash S (1999) Absence of a common functional denominator of visual disturbances in cerebellar disease. Brain 122(Pt 11):2133–2146

    Article  PubMed  Google Scholar 

  • Tomasch J (1969) The numerical capacity of the human cortico-pontocerebellar system. Brain Res 13:476–484

    Article  CAS  PubMed  Google Scholar 

  • Tseng Y-W, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    Article  PubMed  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci (Regul Ed) 2:338–347

    Article  CAS  Google Scholar 

  • Zihl J, von Cramon D, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106(Pt 2):313–340

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Thier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roth, M.J., Lindner, A., Thier, P. (2016). Visual Circuits. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_10

Download citation

Publish with us

Policies and ethics