Skip to main content
Log in

A possible low-mass type Ia supernova

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN the standard model for type Ia supernovae1, a massive white dwarf in a binary system accretes matter from the companion star until it reaches the Chandrasekhar mass (the stability limit for degenerate-electron stars, corresponding to ∼1.4 solar masses), and a runaway thermonuclear explosion ensues. In a popular variant of this model2, the companion star is also a white dwarf. But regardless of the nature of the companion, the invariance of the Chandrasekhar mass implies that all type Ia supernovae will be similar in luminosity3, making them ideal 'standard candles' for determining extragalactic distances, and hence the Hubble constant. In the context of the standard model, the recent type Ia supernova SN1991bg is hard to explain: it was underluminous at all observed epochs, leading to suggestions4,5 that the mass of the progenitor was unusually low. Here we present model calculations, based on more recent spectra, which point to a mass of the white dwarf of ∼0.7 solar masses―well below the Chandrasekhar mass. Moreover, the late spectrum shows evidence of emission from low-velocity hydrogen gas, which might originate in material stripped from an extended, hydrogen-rich companion star. If our interpretation is correct, SN1991bg challenges both the double white-dwarf scenario, and the standard model for type Ia supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woosley, S. E. & Weaver, T. A. A. Rev. Astr. Astrophys. 24, 205–253 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Iben, I., Jr., & Tutukov, A. V. Astrophys. J. Suppl. 54, 335–372 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Branch, D. & Tammann, G. A. A. Rev. Astr. Astrophys. 30, 359–389 (1992).

    Article  ADS  Google Scholar 

  4. Filippenko, A. V. et al. Astr. J. 104, 1543–1556 (1992).

    Article  ADS  Google Scholar 

  5. Leibundgut, B. et al. Astr. J. 105, 301–313 (1993).

    Article  ADS  Google Scholar 

  6. Wheeler, J. C. & Harkness, R. P. Rep. Prog. Phys. 53, 1467–1557 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Ruiz-Lapuente, P. & Filippenko, A. V. in Origin and Evolution of the Elements (eds Prantzos, N., Vangioni-Flam, E. & Cassé, M.) 318–322 (Cambridge Univ. Press, 1993).

    Google Scholar 

  8. Munari, U. & Renzini, A. Astrophys. J. 397, L87–L90 (1992).

    Article  ADS  Google Scholar 

  9. Robinson, E. L. & Shafter, A. W. Astrophys. J. 322, 296–301 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Bragaglia, A., Greggio, L., Renzini, A. & D'Odorico, S. Astrophys. J. 365, L13–L17 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Foss, D., Wade, R. A. & Green, R. F. Astrophys. J. 374, 281–287 (1991).

    Article  ADS  Google Scholar 

  12. Whelan, J. & Iben, I. Jr. Astrophys. J. 186, 1007–1014 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Kenyon, S. J., Livio, M., Mikolajewska, J. & Tout, C. A. Astrophys. J. 407, L81–L84 (1993).

    Article  ADS  Google Scholar 

  14. Woosley, S. E. & Weaver, T. A. Astrophys. J. (submitted).

  15. Livne, E. Astrophys. J. 354, L53–L56 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Livne, E. & Glasner, A. S. Astrophys. J. 370, 272–281 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Chugai, N. Soviet Astr. 30, 563–567 (1986).

    ADS  Google Scholar 

  18. Livne, E., Tuchman, Y. Wheeler, J. C. Astrophys. J. 399, 665–671 (1992).

    Article  ADS  Google Scholar 

  19. Phillips, M. M. et al. Publs Astr. Soc. Pacif. 99, 592–605 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Canal, R., Isern, J., & Labay, J. Astrophys. J. 398, L49–L52 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Burbidge, E. M. & Burbidge, G. R. Astrophys. J. 142, 634–640 (1965).

    Article  ADS  Google Scholar 

  22. Hansen, L., Nørgaard-Nielsen, H. u. & Jørgesen, H. E. Astr. Astrophys. 149, 442–448 (1985).

    ADS  CAS  Google Scholar 

  23. Jeffery, D. J., et al. Astrophys. J. 397, 304–328 (1992).

    Article  ADS  Google Scholar 

  24. Kirshner, R. P. et al. Astrophys. J. (in the press).

  25. Ruiz-Lapuente, P. & Lucy, L. B. Astrophys. J. 400, 127–137 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Phillips, M. M. Astrophys. J. 413, L105–L108 (1993).

    Article  ADS  Google Scholar 

  27. Weidemann, V. & Koester, D. Astr. Astrophys. 132, 195–202 (1984).

    ADS  CAS  Google Scholar 

  28. Filippenko, A. V. et al. Astrophys. J. 384, L15–L18 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Ruiz-Lapuente, P., et al. Astrophys. J. 387, L33–L36 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Lucy, L. B. Astrophys. J. 383, 308–313 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Lapuente, P., Jeffery, D., Challis, P. et al. A possible low-mass type Ia supernova. Nature 365, 728–730 (1993). https://doi.org/10.1038/365728a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365728a0

  • Springer Nature Limited

Navigation