Skip to main content
Log in

MHC-linked LMP gene products specifically alter peptidase activities of the proteasome

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PROTEASOMES are highly conserved macromolecular structures which function as endopeptidases1–3. They are found in the cyto-plasm and nucleus of eukaryotic tissues and consist of at least 14 non-identical subunits with molecular masses ranging from ∼20 to 32K. Proteasomes are essential in the selective degradation of ubiquitinated and certain non-ubiquitinated proteins, acting as the proteolytic core of an energy-dependent 26S (1,500K) proteolytic complex. Two proteasome subunits, LMP2 and LMP7 (refs 4–7), are encoded within the major histocompatibility complex (MHC), implicating proteasomes in antigen processing8,9. Here we deter-mine the function of these two MHC-linked subunits by comparing the proteolytic activities of purified proteasomes containing (LMP+) or lacking (LMP) these components. We find that pro-teasomes of both types have endopeptidase activity against sub-strates bearing hydrophobic, basic or acidic residues immediately preceding the cleavage site (the PI position) and at sites following asparagine, glycine and proline residues. The activity of LMP+ proteasomes is much higher than that of LMP proteasomes against substrates with hydrophobic, basic or asparagine residues at PI, whereas their activities are comparable when acidic and glycine residues are present at PI. The MHC-linked LMP2 and LMP7 subunits therefore function to amplify specific endopeptid-ase activities of the proteasome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldberg, A. L. Eur. J. Biochem. 203, 9–23 (1992).

    Article  CAS  Google Scholar 

  2. Orlowski, M. Biochemistry 29, 10289–10297 (1990).

    Article  CAS  Google Scholar 

  3. Rivett, A. J. Archs Biochem. Biophys. 268, 1–8 (1989).

    Article  CAS  Google Scholar 

  4. Brown, M. G., Driscoll, J. & Monaco, J. J. Nature 353, 355–357 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Ortiz-Navarrete, V. et al. Nature 353, 662–664 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Glynne, R. et al. Nature 353, 357–360 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Martinez, C. K. & Monaco, J. J. Nature 353, 664–667 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Monaco, J. J. Immun. Today 13, 173–179 (1992).

    Article  CAS  Google Scholar 

  9. Michalek, M. T., Grant, E. P., Gramm, C., Goldberg, A. L. & Rock, K. L. Nature 363, 552–554 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Arnold, D. et al. Nature 360, 171–174 (1992).

    Article  ADS  CAS  Google Scholar 

  11. DeMars, R. et al. Proc. natn. Acad. Sci. U.S.A. 82, 8183–8187 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Spies, T. et al. Nature 348, 744–747 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Brown, M. G., Driscoll, J. & Monaco, J. J. J. Immun. 151, 1193–1204 (1993).

    CAS  PubMed  Google Scholar 

  14. Yang, Y., Waters, J. B., Früh, K. & Peterson, P. A. Proc. natn. Acad. Sci. U.S.A. 89, 4928–4932 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Rötzschke, O. & Falk, K. Immun. Today 12, 447–455 (1991).

    Article  Google Scholar 

  16. Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R. & Wiley, D. C. Nature 353, 326–329 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Hunt, D. F. et al. Science 255, 1261–1263 (1992).

    Article  ADS  CAS  Google Scholar 

  18. DiBrino, M. et al. Proc. natn. Acad. Sci. U.S.A. 90, 1508–1512 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Sutton, J. et al. Eur. J. Immun. 23, 447–453 (1993).

    Article  CAS  Google Scholar 

  20. Momburg, F. et al. Nature 380, 174–177 (1992).

    Article  ADS  Google Scholar 

  21. Orino, E. et al. FEBS Lett. 284, 206–210 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driscoll, J., Brown, M., Finley, D. et al. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365, 262–264 (1993). https://doi.org/10.1038/365262a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365262a0

  • Springer Nature Limited

This article is cited by

Navigation