Skip to main content
Log in

Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MURINEHox genes have been postulated to play a role in patterning of the embryonic body plan1–3. Gene disruption studies have suggested that for a given Hox complex, patterning of cell identity along the antero–posterior axis is directed by the more 'posterior' (having a more posterior rostral boundary of expression) Hox proteins expressed in a given cell4–6. This supports the 'posterior prevalence' model2, which also predicts that ectopic expression of a given Hox gene would result in altered structure only in regions anterior to its normal domain of expression. To test this model further, we have expressed the Hox-4.2 gene more rostrally than its normal mesoderm anterior boundary of expression, which is at the level of the first cervical somites. This ectopic expression results in a homeotic transformation of the occipital bones towards a more posterior phenotype into structures that resemble cervical vertebrae, whereas it has no effect in regions that normally express Hox-4.2. These results are similar to the homeotic posteriorization phenomenon generated in Drosophila by ectopic expression of genes of the homeotic complex HOM-C (refs 7–10; reviewed in ref. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruss, P. & Kessel, M. Curr. Opin. Genet. Dev. 1, 204–210 (1991).

    Article  CAS  Google Scholar 

  2. Duboule, D. Curr. Opin. Gene. Dev. 1, 211–216 (1991).

    Article  CAS  Google Scholar 

  3. McGinnis, W. & Krumlauf, R. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  4. Chisaka, O. & Capecchi, M. Nature 350, 473–479 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Lufkin, T., Dierich, A., LeMeur, M., Mark, M. & Chambon, P. Cell 66, 1105–1119 (1991).

    Article  CAS  Google Scholar 

  6. Chisaka, O., Musci, T. S. & Capecchi, M. Nature 355, 516–520 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Schneuwly, S., Klemenz, R. & Gehring, W. J. Nature 325, 816–818 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Kuriora, M. A. & McGinnis, W. Cell 55, 477–485 (1988).

    Article  Google Scholar 

  9. Mann, R. S. & Hogness, D. S. Cell 60, 597–610 (1990).

    Article  CAS  Google Scholar 

  10. Gonzàlez-Reyes, A. & Morata, G. Cell 61, 515–522 (1990).

    Article  Google Scholar 

  11. Verbout, A. J. Adv. Anat. Embryol. Cell Biol. 90, 1–122 (1985).

    Article  CAS  Google Scholar 

  12. Theiler, K. Adv. Anat. Embryol. Cell Biol. 112, 1–99 (1988).

    Article  CAS  Google Scholar 

  13. Remak, R. Untersuchungen über die Entwicklung der Wirbeltiere (Reimer, Berlin, 1855).

    Google Scholar 

  14. Bagnall, K. M., Higgins, S. J. & Sanders, E. J. Development 103, 69–85 (1988).

    CAS  PubMed  Google Scholar 

  15. DeBeer, G. in The Development of the Vertebrate Skull (Oxford Univ. Press, London, 1971).

    Google Scholar 

  16. Noden, D. M. Development 103, (suppl.) 121–140 (1988).

    PubMed  Google Scholar 

  17. Evans, F. G. Ann. N.Y. Acad. Sci. 39, 29–104 (1939).

    Article  ADS  Google Scholar 

  18. Lewis, E. B. Nature 276, 565–570 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Balling, R., Mutter, G., Gruss, P. & Kessel, M. Cell 58, 337–347 (1989).

    Article  CAS  Google Scholar 

  20. Kessel, M., Balling, R. & Gruss, P. Cell 61, 301–308 (1990).

    Article  CAS  Google Scholar 

  21. Kessel, M. & Gruss, P. Cell 67, 89–104 (1991).

    Article  CAS  Google Scholar 

  22. Piveteau, J. in Traité de Zoologie Vol. 12 (ed. Grassé, P. P.) (Masson et Cie, Paris, 1954).

    Google Scholar 

  23. Lathe, R., Vilotte, J. L. & Clark, A. J. Gene 57, 193–201 (1987).

    Article  CAS  Google Scholar 

  24. Green, S., Isserman, I. & Scheer, E. Nucleic Acids Res. 16, 369 (1988).

    Article  CAS  Google Scholar 

  25. Featherstone, M. S., Baron, A., Gaunt, S. J., Mattei, M. G. & Duboule, D. Proc natn. Acad. Sci. U.S.A. 85, 4760–4764 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Hogan, B., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo. A Laboratory manual (Cold Spring Harbour Laboratory Press, New York, 1986).

    Google Scholar 

  27. Wasylyk, C. & Wasylyk, B. EMBO J. 5, 553–560 (1986).

    Article  CAS  Google Scholar 

  28. Zenke, M. et al. EMBO J. 5, 387–397 (1986).

    Article  CAS  Google Scholar 

  29. Dollé, P. & Duboule, D. EMBO J. 8, 1507–1515 (1989).

    Article  Google Scholar 

  30. Ferguson, M. W. J. J. Anat. 125, 555–577 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jenkins, F. A. Anat. Rec. 164, 173–184 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lufkin, T., Mark, M., Hart, C. et al. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359, 835–841 (1992). https://doi.org/10.1038/359835a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359835a0

  • Springer Nature Limited

This article is cited by

Navigation