Skip to main content
Log in

Sonochemical synthesis of amorphous iron

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AMORPHOUS metallic alloys ('metallic glasses') lack long-range crystalline order and have unique electronic, magnetic and corrosion-resistant properties1–3. Their applications include use in power-transformer cores, magnetic storage media, cryothermometry and corrosion-resistant coatings. The production of metallic glasses is made difficult, however, by the extremely rapid cooling from the melt that is necessary to prevent crystallization. Cooling rates of about 105 to 107 K s−1 are generally required; for comparison, plunging red-hot steel into water produces cooling rates of only about 2,500 K s−1. Metallic glasses can be formed by splattering molten metal on a cold surface using techniques such as gun, roller or splat quenching4,5. Acoustic cavitation is known to induce extreme local heating in otherwise cold liquids, and to provide very rapid cooling rates6–11. Here we describe the synthesis of metallic-glass powders using the microscopically extreme (yet macroscopically mild) conditions induced by high-intensity ultrasound. The sonolysis of iron pentacarbonyl, a volatile organometallic compound, produces nearly pure amorphous iron. This amorphous iron powder is a highly active catalyst for the Fischer–Tropsch hydrogenation of carbon monoxide and for hydrogenolysis and dehydrogenation of saturated hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anatharaman, T. R. Metallic Glasses (Trans Tech, Aedermannsorf, Switzerland, 1984).

    Google Scholar 

  2. Haasen, P. & Jaffee, R. I. Amorphous Metals and Semiconductors (Pergamon, London, 1986).

    Google Scholar 

  3. Steeb, H. & Warlimont, H. (eds) Rapidly Quenched Metals (Elsevier, Amsterdam, 1985).

  4. Froes, F. W. & Savage, S. J. (eds) Processing of Structural Metals by Rapid Solidification (American Society for Metals, Metals Park, Ohio, 1987).

  5. Takayama, S. J. Mat. Sci. 11, 164–185 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Atcheley, A. A. & Crum, L. A. in Ultrasound: Its Chemical, Physical and Biological Effects (ed. Suslick, K. S.) 1–64 (VCH, New York, 1988).

    Google Scholar 

  7. Apfel, R. E. in Methods in Experimental Physics Vol. 19 (ed. Edmonds, P. D.) 356–413 (Academic, New York, 1981).

    Google Scholar 

  8. Neppiras, E. A. Phys. Rep. 61, 159–251 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  9. Suslick, K. S. Science 247, 1439–1445 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Suslick, K. S. Scient. Am. 260, 80–86 (1989).

    Article  CAS  Google Scholar 

  11. Suslick, K. S. (ed.) Ultrasound: Its Chemical, Physical, and Biological Effects (VCH, 1988).

  12. Suslick, K. S., Cline Jr, R. E. & Hammerton, D. A. J. Am. chem. Soc. 106, 5641–5642 (1986).

    Article  Google Scholar 

  13. Suslick, K. S., Cline Jr, R. E. & Hammerton, D. A. IEEE Ultrason. Symp. Proc. 4, 1116–1121 (1985).

    Google Scholar 

  14. Suslick, K. S. & Hammerton, D. A. IEEE Trans. Ultrason. Ferroelec. Freq. Cont. 33, 143–147 (1986).

    Article  CAS  Google Scholar 

  15. Barber, B. P. & Putterman, S. J. Nature 352, 318–320 (1991).

    Article  ADS  Google Scholar 

  16. Flint, E. B. & Suslick, K. S. J. Am. chem. Soc. 111, 6987–6992 (1989).

    Article  CAS  Google Scholar 

  17. Suslick, K. S. & Flint, E. B. Nature 330, 553–555 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Suslick, K. S., Gawienowski, J. W., Schubert, P. F. & Wang, H. H. J. phys. Chem. 87, 2299–2301 (1983).

    Article  CAS  Google Scholar 

  19. Einhorn, C., Einhorn, J. & Luche, J. L. Synthesis 11, 787–813 (1989).

    Article  Google Scholar 

  20. Lindley, J. & Mason, T. J. Chem. Soc. Rev. 16, 275–311 (1987).

    Article  CAS  Google Scholar 

  21. Boudjouk, P. J. Chem. Ed. 63, 427–429 (1986).

    Article  CAS  Google Scholar 

  22. Suslick, K. S. & Flint, E. B. in Experimental Organometallic Chemistry: A Practicum in Synthesis and Characterization (eds Wayda, A. & Darensbourg, M. Y.) 195–198 (American Chemical Society, Washington, DC, 1987).

    Google Scholar 

  23. Takashi, S. Mat. Sci. Lett. 6, 844–846 (1987).

    Article  Google Scholar 

  24. Luborsky, F. E. (ed.) Amorphous Metallic Alloys (Butterworths, London, 1983).

  25. Suslick, K. S., Schubert, P. F. & Goodale, J. W. J. Am. chem. Soc. 103, 7324–7344 (1981).

    Article  Google Scholar 

  26. Suslick, K. S., Goodale, J. W., Wang, H. H. & Schubert, P. F. J. Am. chem. Soc., 105, 5781–5785 (1983).

    Article  CAS  Google Scholar 

  27. Suslick, K. S. & Schubert, P. F. J. Am. chem. Soc. 105, 6042–6044 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suslick, K., Choe, SB., Cichowlas, A. et al. Sonochemical synthesis of amorphous iron. Nature 353, 414–416 (1991). https://doi.org/10.1038/353414a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353414a0

  • Springer Nature Limited

This article is cited by

Navigation