Skip to main content
Log in

Influence of Sintering Temperature on the Structure and Properties of Powder Iron Aluminide Fe3Al

  • SINTERED METALS AND ALLOYS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper examines the impact of heating temperature and isothermal holding time during sintering in a vacuum on the phase composition, structure, and mechanical properties of Fe3Al iron aluminide synthesized from a mixture of iron and aluminum powders. Dilatometric studies have shown the complexity of occurring changes in the density of the billets during sintering. First, the porosity increases from 15% in the initial billet to 45% during sintering at 950°C, and after decreases to 5% at a sintering temperature of 1450°C. The synthesis of intermetallic compounds at powder mixture heating was examined by the X-ray diffraction method. It was shown that up to 30% of intermetallic compound Fe2Al5 is formed during an hour-long isothermal holding at 600°C. Increasing the holding time to 3 hours or temperature to 950°C results in the formation and gradual growth of FeAl (B2) aluminide content. With a further increase of sintering temperature up to 1450°C, the amount of A2 phase becomes bigger, and concentration of iron and aluminum in it approaches to stoichiometric ratio Fe3Al. The mechanical properties of iron aluminide intensify with increasing sintering temperature, especially rapidly after sintering at 1450°C, when planar pores close and perfect interparticle contacts form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. S.C. Deevi and V.K. Sikka, “Nickel and iron aluminides: an overview on properties, processing, and applications,” Intermetallics, 4, No. 5, 357−375 (1996).

    Article  CAS  Google Scholar 

  2. J. Wang, J. Xing, Z. Qiu, X. Zhi, and L. Cao, “Effect of fabrication methods on microstructure and mechanical properties of Fe3Al-based alloys,” J. Alloys Compds., 488, 117–122 (2009).

    Article  CAS  Google Scholar 

  3. L.M. Peng, H. Li, J.H. Wang, and M. Gong, “High strength and high fracture toughness ceramic−iron aluminide (Fe3Al) composites,” Mater. Letters, 60, 883–887 (2006).

    Article  CAS  Google Scholar 

  4. M. Zamanzade, A. Barnoush, and C. Motz, “A review on the properties of iron aluminide intermetallics,” Crystals., 6, No. 10, 1–29 (2016).

    CAS  Google Scholar 

  5. N. S. Stoloff, “Iron aluminides: present status and future prospects,” Mater. Sci. Eng. A., 258, 1–14 (1998).

    Article  Google Scholar 

  6. C.T. Liu, E.P. George, P.J. Maziasz, and J.H. Schneibel, “Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design,” Mater. Sci. Eng., A258, 84−98 (1998).

    Article  CAS  Google Scholar 

  7. X.Q. Yu and Y.S. Sun, “Hot working of Fe3Al based alloy,” Mater. Sci. Technol., 20, 339−342 (2004).

    Article  CAS  Google Scholar 

  8. B. Voyzelle and J. D. Boyd, “High-temperature deformation behaviour of Fe3Al,” Materials Science and Engineering A., 258, 243−248 (1998).

    Article  Google Scholar 

  9. E. Godlewska, S. Szczepanik, R. Mania, J. Krawiarz, and S. Kozinski, “FeAl materials from intermetallic powders,” Intermetallics, 11, No. 4, 307−312 (2003).

    Article  CAS  Google Scholar 

  10. Q. He, C. Jia, and J. Meng, “Influence of iron powder particle size on the microstructure and properties of Fe3Al intermetallics prepared by mechanical alloying and spark plasma sintering,” Mater. Sci. Eng. A, 428, 314–318 (2006).

    Article  Google Scholar 

  11. X. Q. Yu and Y.S. Sun, “Hot working of Fe3Al based alloy,” Mater. Sci. Technol., 20, 339–342 (2004).

    Article  CAS  Google Scholar 

  12. H. Song, Y. Wu, C. Tang, S. Yuan, Q. Gong, and J. Liang, “Microstructure and mechanical properties of feal intermetallics prepared by mechanical alloying and hot-pressing,” Tsinghua Sci. Technol., 14, No. 3, 300–306 (2009).

    Article  CAS  Google Scholar 

  13. G.A. Bagliuk, A.I. Tolochin, A.V. Tolochina, R.V. Iakovenko, and V.S. Kurikhin, “Hot forging of powdered Fe3Al intermetallic alloys,” Mater. Sci. Non-Equilibrium Phase Transform., 1, Issue 2, 53–57 (2015).

    Google Scholar 

  14. S. Gedevanishvili and S.C. Deevi, “Processing of iron aluminides by pressureless sintering through Fe + Al elemental route,” Mater. Sci. Eng. A, 325, 163–176 (2002).

    Article  Google Scholar 

  15. H. Gao, Y. He, P. Shen, J. Zou, N. Xu, Y. Jiang, B. Huang, and C.T. Liu, “Porous FeAl intermetallics fabricated by elemental powder reactive synthesis,” Intermetallics, 17, 1041–1046 (2009).

    Article  CAS  Google Scholar 

  16. P. Novak, A. Michalcova, I. Marek, M. Mudrova, K. Saksl, J. Bednarcik, P. Zikmund, and D. Vojtech, “On the formation of intermetallics in Fe–Al system—an in-situ XDR study,” Intermetallics, 32, 127–136 (2013).

    Article  CAS  Google Scholar 

  17. H.Z. Kang and C.T. Hu, “Swelling behavior in reactive sintering of Fe–Al mixtures,” Mater. Chem. Physics., 88, 264–272 (2004).

    Article  CAS  Google Scholar 

  18. B. Sundman, I. Ohnuma, N. Dupin, U.R. Kattner, and S.G. Fries, “An assessment of the entire Al–Fe system including D03 ordering,” Acta Mater., 57, Issue 10, 2896–2908 (2009).

    Article  CAS  Google Scholar 

  19. G.V. Kirik, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, and B. Antoszewski, “Quality analysis of aluminized surface layers produced by electrospark deposition,” Powder Metall. Met. Ceram., 56, No. 11– 12, 688–696 (2018).

    Article  CAS  Google Scholar 

  20. D.E. Alman, J.A. Hawk, J.H. Tylczak, C.P. Dogan, and R.D. Wilson, “Wear of iron–aluminide intermetallic-based alloys and composites by hard particles,” Wear, 251, 875–884 (2001).

    Article  Google Scholar 

  21. H.E. Maupin, R.D. Wilson, and J.A. Hawk, “An abrasive wear study of ordered Fe3Al,” Wear, 159, 241–247 (1992).

    Article  CAS  Google Scholar 

  22. V.V. Skorokhod and S.M. Solonin, Physical Metallurgy Properties of Sintering, Moscow (1984), pp. 158.

  23. G.A. Baglyuk, A.I. Tolochin, A.V. Tolochina, R.V. Iakovenko, A.N. Gripachevckii, and M.E. Golovkova, “Effect of process conditions on the structure and properties of the hot-forged Fe3Al intermetallic alloy,” Powder Metall. Met. Ceram., 55, No. 5–6, 297–305 (2016).

    Article  CAS  Google Scholar 

  24. G.A. Baglyuk, A.I. Tolochin, A.V. Tolochina, R.V. Iakovenko, V.K. Kud, Ya.I. Evich, and A.N. Gripachevckii, Influence of titanium diboride on structure and properties of hot-forged Fe3Al intermetallic alloy,” Naukovi Notatky, 50, 8–17 (2015).

    Google Scholar 

  25. Yu.N. Podrezov, V.A. Nazarenko, A.V. Vdovichenko, V.I. Danilenko, O.S. Koryak, and Ya.I. Evich, “Mechanical properties of powder titanium at different production stages. III. Contact formation in powder titanium based on examination of mechanical properties in sintering,” Powder Metall. Met. Ceram., 48, No. 3–4, 201–210 (2009).

    Article  CAS  Google Scholar 

  26. Yu.N. Podrezov, V.A. Nazarenko, A.V. Laptev, A.I. Tolochin, V.I. Danilenko, Ya.I. Evich, and O.S. Koryak, “Mechanical properties of powder titanium at different production stages. IV. Mechanical properties and contact formation in powder titanium produced by dynamic hot pressing,” Powder Metall. Met. Ceram., 48, No. 5–6, 295–301 (2009).

    Article  CAS  Google Scholar 

  27. O.V. Mikhailov and M.B. Shtern, “Considering stress and compaction multimodulus behavior in the theory of plasticity of porous bodies,” Powder Metall. Met. Ceram., No. 5, 17–23 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu.M. Podrezov.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 59, Nos. 3–4 (532), pp. 42–54, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolochyn, O., Tolochyna, O., Bagliuk, H. et al. Influence of Sintering Temperature on the Structure and Properties of Powder Iron Aluminide Fe3Al. Powder Metall Met Ceram 59, 150–159 (2020). https://doi.org/10.1007/s11106-020-00150-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-020-00150-9

Keywords

Navigation