Skip to main content
Log in

Anabolism

Low mechanical signals strengthen long bones

  • Brief Communication
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Although the skeleton's adaptability to load-bearing has been recognized for over a century1, the specific mechanical components responsible for strengthening it have not been identified. Here we show that after mechanically stimulating the hindlimbs of adult sheep on a daily basis for a year with 20-minute bursts of very-low-magnitude, high-frequency vibration, the density of the spongy (trabecular) bone in the proximal femur is significantly increased (by 34.2%) compared to controls. As the strain levels generated by this treatment are three orders of magnitude below those that damage bone tissue, this anabolic, non-invasive stimulus may have potential for treating skeletal conditions such as osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Montages of photomicrographs of the proximal sheep femur used for static histomorphometric evaluation after 1 year of exposure (20 min per day) to a 0.3g, 30-Hz mechanical stimulus.

Similar content being viewed by others

References

  1. Wolff, J. The Law of Bone Remodeling (transl. Maquet, P. & Furlong, R.) (Springer, Berlin, 1986).

    Book  Google Scholar 

  2. Frost, H. Anat. Rec. 26, 403–413 (1990).

    Article  Google Scholar 

  3. Burr, D., Martin, R., Schaffler, M. & Radin, E. J. Biomech. 18, 189–200 (1985).

    Article  CAS  Google Scholar 

  4. Rubin, C. & Lanyon, L. J. Exp. Biol. 101, 187–211 (1982).

    CAS  PubMed  Google Scholar 

  5. Schaffler, M., Radin, E. & Burr, D. Bone 11, 321–326 (1990).

    Article  CAS  Google Scholar 

  6. Huang, R., McLeod, K. & Rubin, C. J. Gerontol. 54, 352–357 (1999).

    Article  Google Scholar 

  7. Fritton, J., Rubin, C., Qin, Y. & McLeod, K. Ann. Biomed. Eng. 25, 831–839 (1997).

    Article  CAS  Google Scholar 

  8. Carter, D., Harris, W., Vasu, R. & Caler, W. Am. Soc. Mech. Eng. 45, 81–95 (1981).

    Google Scholar 

  9. Hylander, W., Ravosa, M., Ross, C. & Johnson, K. Am. J. Phys. Anthropol. 107, 257–271 (1998).

    Article  CAS  Google Scholar 

  10. Blob, R. & Biewener, A. J. Exp. Biol. 202, 1023–1046 (1999).

    PubMed  Google Scholar 

  11. Fritton, S., McLeod, K. & Rubin, C. J. Biomech. 33, 317–326 (2000).

    Article  CAS  Google Scholar 

  12. Bain, S. & Rubin, C. J. Bone Miner. Res. 5, 1069–1075 (1990).

    Article  CAS  Google Scholar 

  13. Rubin, C., Gross, T., McLeod, K. & Bain, S. J. Bone Miner. Res. 10, 488–495 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clinton Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, C., Turner, A., Bain, S. et al. Low mechanical signals strengthen long bones. Nature 412, 603–604 (2001). https://doi.org/10.1038/35088122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35088122

  • Springer Nature Limited

This article is cited by

Navigation