Skip to main content
Log in

An auroral flare at Jupiter

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Jupiter's aurora is the most powerful in the Solar System1. It is powered largely by energy extracted from planetary rotation2, although there seems also to be a contribution from the solar wind3,4. This contrasts with Earth's aurora, which is generated through the interaction of the solar wind with the magnetosphere. The major features of Jupiter's aurora (based on far-ultraviolet5,6,7, near-infrared8,9 and visible-wavelength10 observations) include a main oval that generally corotates with the planet and a region of patchy, diffuse emission inside the oval on Jupiter's dusk side. Here we report the discovery of a rapidly evolving, very bright and localized emission poleward of the northern main oval, in a region connected magnetically to Jupiter's outer magnetosphere. The intensity of the emission increased by a factor of 30 within 70 s, and then decreased on a similar timescale, all captured during a single four-minute exposure. This type of flaring emission has not previously been reported for Jupiter (similar, but smaller, transient events have been observed at Earth), and it may be related directly to changes in the solar wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Hubble Space Telescope images of Jupiter's northern aurora on 21 September 1999.
Figure 2: The rapidly evolving auroral flare observed poleward of Jupiter's auroral oval.
Figure 3: Modelled solar wind dynamic pressure at Jupiter.

Similar content being viewed by others

References

  1. Bhardwaj, A. & Gladstone, G. R. Auroral emissions of the giant planets. Rev. Geophys. 38, 295–353 (2000).

    Article  ADS  CAS  Google Scholar 

  2. Hill, T. W., Dessler, A. J. & Goertz, C. K. in Physics of the Jovian Magnetosphere (ed. Dessler, A. J.) 353–394 (Cambridge Univ. Press, Cambridge, 1983).

    Book  Google Scholar 

  3. Desch, M. D. & Barrow, C. H. Direct evidence for solar wind control of Jupiter's hectometer-wavelength radio emission. J. Geophys. Res. 89, 6819–6823 (1984).

    Article  ADS  Google Scholar 

  4. Baron, R. L., Owen, T., Connerney, J. E. P., Satoh, T. & Harrington, J. Solar wind control of Jupiter's H+3 auroras. Icarus 120, 437–442 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Clarke, J. T. et al. Far-ultraviolet imaging of Jupiter's aurora and the Io “footprint”. Science 274, 404–409 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Clarke, J. T. et al. Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission. J. Geophys. Res. 103, 20217–20236 (1998).

    Article  ADS  Google Scholar 

  7. Prangé, R. et al. Detailed study of FUV Jovian auroral features with the post-COSTAR HST faint object camera. J. Geophys. Res. 103, 21095–20215 (1998).

    Article  Google Scholar 

  8. Connerney, J. E. P., Baron, R., Satoh, T. & Owen, T. Images of excited H+3 at the foot of the Io flux tube in Jupiter's atmosphere. Science 262, 1035–1038 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Satoh, T. & Connerney, J. E. P. Jupiter's H+3 emissions viewed in corrected jovimagnetic coordinates. Icarus 141, 236–252 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Vasavada, A. R. et al. Jupiter's visible aurora and Io footprint. J. Geophys. Res. 104, 27133–27142 (1999).

    Article  ADS  Google Scholar 

  11. Connerney, J. E. P., Acuña, M. H., Ness, N. F. & Satoh, T. New models of Jupiter's magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103, 11929–11939 (1998).

    Article  ADS  Google Scholar 

  12. Khurana, K. K. Euler potential models of Jupiter's magnetospheric field. J. Geophys. Res. 102, 11295–11306 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Ogino, T., Walker, R. J. & Kivelson, M. G. A global magnetohydrodynamic simulation of the jovian magnetosphere. J. Geophys. Res. 103, 225–235 (1998).

    Article  ADS  Google Scholar 

  14. Stone, J. M. & Norman, M. L. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I. The hydrodynamic algorithms and tests. Astrophys. J. Suppl. Ser. 80, 753–790 (1992).

    Article  ADS  Google Scholar 

  15. Gosling, J. T. & Riley, P. The acceleration of slow coronal mass ejections in the high-speed solar wind. Geophys. Res. Lett. 23, 2867–2870 (1996).

    Article  ADS  Google Scholar 

  16. McComas, D. J. et al. Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86, 563–612 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Intriligator, D. S. & Wolfe, J. H. in Jupiter: Studies of the Interior, Atmosphere, Magnetosphere, and Satellites (ed. Gehrels, T.) 848–869 (Univ. Arizona Press, Tucson, 1976).

    Google Scholar 

  18. Craven, J. D., Frank, L. A., Russell, C. T., Smith, E. J. & Lepping, R. P. in Solar Wind–Magnetosphere Coupling (eds Kamide, Y. & Slavin, J. A.) 367–380 (Terra Scientific, Tokyo, 1986).

    Book  Google Scholar 

  19. Zhou, X. & Tsurutani, B. T. Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shocks). Geophys. Res. Lett. 26, 1097–1100 (1999).

    Article  ADS  Google Scholar 

  20. Sandholt, P. E. et al. Cusp/cleft auroral activity in relation to solar wind dynamic pressure, interplanetary magnetic field Bz and By. J. Geophys. Res. 99, 17323–17342 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions with B. T. Tsurutani and J. L. Burch and the support of the Space Telescope Science Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Waite Jr.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waite, J., Gladstone, G., Lewis, W. et al. An auroral flare at Jupiter. Nature 410, 787–789 (2001). https://doi.org/10.1038/35071018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071018

  • Springer Nature Limited

This article is cited by

Navigation