Skip to main content
Log in

BRI1 is a critical component of a plasma-membrane receptor for plant steroids

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 10 May 2001

Abstract

Most multicellular organisms use steroids as signalling molecules for physiological and developmental regulation. Two different modes of steroid action have been described in animal systems: the well-studied gene regulation response mediated by nuclear receptors1,2, and the rapid non-genomic responses mediated by proposed membrane-bound receptors3,4. Plant genomes do not seem to encode members of the nuclear receptor superfamily5. However, a transmembrane receptor kinase, brassinosteroid-insensitive1 (BRI1), has been implicated in brassinosteroid responses6,7. Here we show that BRI1 functions as a receptor of brassinolide, the most active brassinosteroid. The number of brassinolide-binding sites and the degree of response to brassinolide depend on the level of BRI1 protein. The brassinolide-binding activity co-immunoprecipitates with BRI1, and requires a functional BRI1 extracellular domain. Moreover, treatment of Arabidopsis seedlings with brassinolide induces autophosphorylation of BRI1, which, together with our binding studies, shows that BRI1 is a receptor kinase that transduces steroid signals across the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Overexpression of BRI1–GFP increases cell elongation and increases the number of brassinolide (BL) binding sites in membrane fractions.
Figure 2: BRI1 binds to BL.
Figure 3: BL induces phosphorylation of BRI1 in plants.

Similar content being viewed by others

References

  1. Beato, M., Herrlich, P. & Schutz, G. Steroid hormone receptors: many actors in search of a plot. Cell 83, 851–857 (1995).

    Article  CAS  Google Scholar 

  2. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: The second decade. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  3. Wehling, M. Specific, nongenomic actions of steroid hormones. Annu. Rev. Physiol. 59, 365–393 (1997).

    Article  CAS  Google Scholar 

  4. Schmidt, B. M. et al. Rapid, nongenomic steroid actions: A new age? Front. Neuroendocrinol. 21, 57–94 (2000).

    Article  CAS  Google Scholar 

  5. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  ADS  Google Scholar 

  6. Li, J. & Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929–938 (1997).

    Article  CAS  Google Scholar 

  7. He, Z. et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288, 2360–2363 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Mandava, N. B. Plant growth-promoting brassinosteroids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 23–52 (1988).

    Article  CAS  Google Scholar 

  9. Li, J., Nagpal, P., Vitart, V., McMorris, T. C. & Chory, J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398–401 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Wang, Z.-Y. & Chory, J. in Recent Advances in Phytochemistry Vol. 34, Evolution of Metabolic Pathways (eds Romeo, J. T., Ibrahim, R., Varin, L. & DeLuca, V.) 409–431 (Elsevier Science, Oxford, 2000).

    Google Scholar 

  11. Clouse, S. D., Langford, M. & McMorris, T. C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111, 671–678 (1996).

    Article  CAS  Google Scholar 

  12. Schumacher, K. & Chory, J. Brassinosteroid signal transduction: still casting the actors. Curr. Opin. Plant Biol. 3, 79–84 (2000).

    Article  CAS  Google Scholar 

  13. Friedrichsen, D. M., Joazeiro, C. A., Li, J., Hunter, T. & Chory, J. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor Serine/Threonine kinase. Plant Physiol. 123, 1247–1256 (2000).

    Article  CAS  Google Scholar 

  14. Asami, T. et al. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol. 123, 93–100 (2000).

    Article  CAS  Google Scholar 

  15. Choe, S. et al. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10, 231–243 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Clouse, S. & Sasse, J. Brassinosteroids: Essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427–451 (1998).

    Article  CAS  Google Scholar 

  17. Noguchi, T. et al. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121, 743–752 (1999).

    Article  CAS  Google Scholar 

  18. Fujioka, S., Noguchib, T., Takatsutod, S. & Yoshida, S. Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochemistry 49, 1841–1848 (1998).

    Article  CAS  Google Scholar 

  19. Luo, W., Janzen, L., Pharis, R. P. & Back, T. G. Bioactivity of brassinolide methyl ethers. Phytochemistry 49, 637–642 (1998).

    Google Scholar 

  20. Trotochaud, A. E., Jeong, S. & Clark, S. E. CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase. Science 289, 613–617 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Torii, K. U. et al. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8, 735–746 (1996).

    Article  CAS  Google Scholar 

  22. Jinn, T. L., Stone, J. M. & Walker, J. C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev. 14, 108–117 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamamuro, C. et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12, 1591–1605 (2000).

    Article  CAS  Google Scholar 

  24. Li, J., Biswas, M. G., Chao, A., Russell, D. W. & Chory, J. Conservation of function between mammalian and plant steroid 5alpha- reductases. Proc. Natl Acad. Sci. USA 94, 3554–3559 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Seto, H. et al. A general approach to synthesis of labeled brassinosteroids: preparation of [25,26,27-2H7]brassinolide with 60% isotopic purity from the parent brassinolide. Tetrahedr. Lett. 39, 7525–7528 (1998).

    Article  CAS  Google Scholar 

  26. Fankhauser, C. et al. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284, 1539–1541 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Chen for comments and L. Barden for technical assistance on the manuscript; D. Vafeados for technical assistance; and D. Friedrichsen for providing the BRI1–GFP line. This work was supported by a grant from the USDA and the Howard Hughes Medical Institute to J.C., and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan to S.F.. Z.W. is an NSF postdoctoral fellow and J.C. is an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Chory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZY., Seto, H., Fujioka, S. et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380–383 (2001). https://doi.org/10.1038/35066597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35066597

  • Springer Nature Limited

This article is cited by

Navigation