Skip to main content
Log in

Subduction and collision processes in the Central Andes constrained by converted seismic phases

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The Central Andes are the Earth's highest mountain belt formed by ocean–continent collision1,2. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust2,3,4,5,6, dominated by tectonic shortening7,8,9,10. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovičić discontinuity—generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro–eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10–20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Map of the Central Andes, showing networks of passive seismological stations used in this study.
Figure 2: Receiver function (RF) images and crustal models of the Central Andes along an east–west profile.
Figure 3: Four east–west depth profiles of migrated RF data within latitude ranges of 1° each.
Figure 4: RFs from two earthquakes (filled circles in Fig. 1) recorded by the CINCA and PISCO seismic networks and their modelling.

Similar content being viewed by others

References

  1. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Current plate motions. Geophys. J. Int. 101, 425–478 (1990).

    Article  ADS  Google Scholar 

  2. Isacks, B. L. Uplift of the central Andean plateau and bending of the Bolivian orocline. J. Geophys. Res. 93, 3211– 3231 (1988).

    Article  ADS  Google Scholar 

  3. James, D. E. Andean crustal and upper mantle structure. J. Geophys. Res. 76, 3246–3271 (1971).

    Article  ADS  Google Scholar 

  4. Wigger, P. J. et al. in Tectonics of the Southern Central Andes (eds Reutter, K. -J., Scheuber, E. & Wigger, P. J.) 23–48 (Springer, Berlin, 1994).

    Book  Google Scholar 

  5. Zandt, G., Velasco, A. A. & Beck, S. L. Composition and thickness of the southern Altiplano crust, Bolivia. Geology 22, 1003– 1006 (1994).

    Article  ADS  Google Scholar 

  6. Beck, S. L. et al. Crustal thickness variations in the Central Andes. Geology 24, 407–410 ( 1996).

    Article  ADS  Google Scholar 

  7. Allmendinger, R. W. & Gubbels, T. Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophysics 259, 1–13 ( 1996)

    Article  ADS  Google Scholar 

  8. Kley, J. & Monaldi, C. R. Tectonic shortening and crustal thickness in the central Andes: how good is the correlation? Geology 26, 723–726 ( 1998).

    Article  ADS  Google Scholar 

  9. Lamb, S., Hoke, L., Kennan, L. & Dewey, J. in Orogeny Through Time (eds Burg, J. P. & Ford, M.) 237–264 (Special Publication 121, Geological Society, London, 1997).

    Google Scholar 

  10. Allmendinger, R. W., Jordan, T. E., Kay, S. M. & Isacks, B. L. The evolution of the Altiplano-Puna Plateau of the Central Andes. Annu. Rev. Earth Planet. Sci. 26, 139– 174 (1997).

    Article  ADS  Google Scholar 

  11. Owens, T. J., Zandt, G. & Taylor, S. R. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms. J. Geophys. Res. 89, 7783– 7795 (1984).

    Article  ADS  Google Scholar 

  12. Yuan, X., Ni, J., Kind, R., Mechie, J. & Sandvol, E. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J. Geophys. Res. 102, 27491–27500 ( 1997).

    Article  ADS  Google Scholar 

  13. Jones, C. H. & Phinney, R. A. Seismic structure of the lithosphere from teleseismic converted arrivals observed at small arrays in the southern Sierra Nevada and vicinity, California. J. Geophys. Res. 103, 10065–10090 (1998).

    Article  ADS  Google Scholar 

  14. Kosarev, G. et al. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science 283, 1306– 1309 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Kay, R. W. & Kay, S. M. Delamination and delamination magmatism. Tectonophysics 219, 177– 189 (1993).

    Article  ADS  Google Scholar 

  16. Cassidy, J. F. Numerical experiments in broadband receiver function analysis. Bull. Seismol. Soc. Am. 82, 1453–1474 (1992).

    Google Scholar 

  17. Sobolev, S. V. & Babeyko, A. Yu. Modelling of mineralogical composition, density and elastic wave velocities in the unhydrous rocks. Surv. Geophys. 15, 515– 544 (1994).

    Article  ADS  Google Scholar 

  18. Peacock, S. M. The importance of blueschist - eclogite dehydration reactions in subducting oceanic crust. Geol. Soc. Am. Bull. 105, 684–694 (1993).

    Article  ADS  Google Scholar 

  19. Kirby, S., Engdahl, E. R. & Denlinger, R. in Subduction Top to Bottom (eds Bebout, G. E., Scholl, D. W., Kirby, S. H. & Platt, J. P.) 195– 214 (Geophysical Monograph 96, American Geophysical Union, Washington DC, 1996).

    Google Scholar 

  20. ANCORP Working Group. Seismic reflection image of Andean subduction zone revealing offset of intermediate-depth seismicity into oceanic mantle. Nature 397, 341– 344 (1999).

    Article  ADS  Google Scholar 

  21. Lucassen, F., Lewerenz, S. & Franz, G. Metamorphism, isotopic ages and composition of lower crustal granulite xenoliths from the Cretaceous Salta Rift, Argentina. Contrib. Mineral. Petrol. 134, 325– 341 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Chmielowski, J., Zandt, G. & Haberland, C. The central Andean Altiplano-Puna Magma body. Geophys. Res. Lett. 26, 783–786 (1999).

    Article  ADS  Google Scholar 

  23. Giese, P., Scheuber, E., Schilling, F., Schmitz, M. & Wigger, P. Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity. J. S. Am. Earth Sci. 12, 201–220 (1999).

    Article  Google Scholar 

  24. Nelson, K. D. et al. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science 274, 1684–1688 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Kind, R. et al. Evidence from earthquake data for a partially molten crustal layer in southern Tibet. Science 274, 1692 –1694 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Hacker, B. R. et al. Hot and dry deep crustal xenoliths from Tibet. Science 287, 2463–2466 ( 2000).

    Article  ADS  CAS  Google Scholar 

  27. Cahill, T. A. & Isacks, B. L. Seismicity and shape of the subducted Nazca Plate. J. Geophys. Res. 97, 17503– 17529 (1992).

    Article  ADS  Google Scholar 

  28. Graeber, F. & Asch, G. Three dimensional models of P wave velocity and P to S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data. J. Geophys. Res. 104, 20237–20256 (1999).

    Article  ADS  Google Scholar 

  29. Engdahl, E. R., van der Hilst, R. D. & Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 ( 1998).

    Google Scholar 

Download references

Acknowledgements

We thank R. Trumbull and F. Lucassen for discussions, J. Mechie and D. Harlov for comments on the manuscript, and G. Chong and M. Wilke for supporting the experiments. The field experiments were supported by the Collaborative Research Center (SFB) 267 of the Deutsche Forschungsgemeinschaft, the GeoForschungsZentrum Potsdam, the Freie Universität Berlin, the US National Science Foundation, the PASSCAL project, the Universidad de Chile (Santiago) and the Universidad Catolica del Norte (Antofagasta).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kind.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X., Sobolev, S., Kind, R. et al. Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408, 958–961 (2000). https://doi.org/10.1038/35050073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050073

  • Springer Nature Limited

This article is cited by

Navigation