Skip to main content
Log in

Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

When an intense laser pulse is focused into a gas, the light–atom interaction that occurs as atoms are ionized results in an extremely nonlinear optical process1,2,3—the generation of high harmonics of the driving laser frequency. Harmonics that extend up to orders of about 300 have been reported4,5, some corresponding to photon energies in excess of 500 eV. Because this technique is simple to implement and generates coherent, laser-like, soft X-ray beams, it is currently being developed for applications in science and technology; these include probing the dynamics in chemical and materials systems6 and imaging7. Here we report that by carefully tailoring the shape8 of intense light pulses, we can control9,10 the interaction of light with an atom during ionization, improving the efficiency of X-ray generation by an order of magnitude. We demonstrate that it is possible to tune the spectral characteristics of the emitted radiation, and to steer the interaction between different orders of nonlinear processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Optimization of a single (27th) harmonic in argon while suppressing adjacent harmonics.
Figure 2: Laser pulse characteristics.
Figure 3: Optimization of a single harmonic in argon.

Similar content being viewed by others

References

  1. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gasses. J. Opt. Soc. Am. B 4, 595-601 (1987).

    Article  ADS  Google Scholar 

  2. Macklin, J. J., Kmetec, J. D. & Gordon, C. L. III High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993).

    Article  ADS  CAS  Google Scholar 

  3. L'Huillier, A. & Balcou, P. High-order harmonic generation in rare gases with a 1-ps 1053 nm laser. Phys. Rev. Lett. 70, 774–777 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Chang, Z., Rundquist, A., Wang, H., Murnane, M. M. & Kapteyn, H. C. Generation of coherent X-rays at 2.7 nm using high harmonics. Phys. Rev. Lett. 79, 2967 –2970 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Spielmann, C. et al. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science 278, 661– 664 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Rettenberger, A., Leiderer, P., Probst, M. & Haight, R. Ultrafast electron transport in layered semiconductors studied with femtosecond-laser photoemission. Phys. Rev. B 56, 12092– 12095 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Descamps, D. et al. Extreme ultraviolet interferometry measurements with high-order harmonics. Opt. Lett. 25, 135– 137 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Wefers, M. & Nelson, K. Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light-modulators. J. Opt. Soc. Am. B 12, 1343–1362 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Judson, R. & Rabitz, H. Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500– 1503 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Warren, W., Rabitz, H. & Dahleh, M. Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Weinacht, T. C., Ahn, J. & Bucksbaum, P. H. Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396 , 239–242 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Meshulach, D. & Silberberg, Y. Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses. Phys. Rev. A 60, 1287–1292 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Assion, A. et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919 –922 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 ( 1998).

    Article  ADS  CAS  Google Scholar 

  16. Roos, L. et al. Controlling phase matching of high-order harmonic generation by manipulating the fundamental field. Phys. Rev. A 60, 5010–5018 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Altucci, C., Bruzzese, R., D'Antuoni, D., de Lisio, C. & Solimeno, S. Harmonic generation in gases by use of Bessel-Gauss laser beams. J. Opt. Soc. Am. B 17, 34–42 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Zhou, J., Peatross, J., Murnane, M. M., Kapteyn, H. C. & Christov, I. P. Enhanced high harmonic generation using 25 femtosecond laser pulses. Phys. Rev. Lett. 76, 752–755 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Chang, Z., Rundquist, A., Wang, H., Kapteyn, H. C. & Murnane, M. M. Temporal phase control of soft-X-Ray harmonic emission. Phys. Rev. A 58, R30–R33 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Salieres, P., Antoine, P., de Bohan, A. & Lewenstein, M. Temporal and spectral tailoring of high-order harmonics. Phys. Rev. Lett. 81, 5544–5547 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Zeek, E. et al. Adaptive pulse compression for transform-limited 15fs high-energy pulse generation. Opt. Lett. 25, 587– 589 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Zeek, E. et al. Pulse compression using deformable mirrors. Opt. Lett. 24, 493–495 ( 1999).

    Article  ADS  CAS  Google Scholar 

  23. Yelin, D., Meshulach, D. & Silberberg, Y. Adaptive femtosecond pulse compression. Opt. Lett. 22, 1793–1795 (1997).

    Article  ADS  CAS  Google Scholar 

  24. DeLong, K. W., Trebino, R., Hunter, J. & White, W. E. Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B 11, 2206–2215 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Kulander, K. C., Schafer, K. J. & Krause, J. L. in Super-Intense Laser-Atom Physics (eds Piraux, B., L'Huillier, A. & Rzazewski, K.) 95–110 (Plenum, New York, 1993).

    Book  Google Scholar 

  26. Lewenstein, M., Balcou, P., Ivanov, M. Y. & Corkum, P. B. Theory of high-harmonic generation of low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1993).

    Article  ADS  Google Scholar 

  27. Ditmire, T. et al. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489– 492 (1999).

    Article  ADS  CAS  Google Scholar 

  28. LeBlanc, S. P. et al. Temporal characterization of a self-modulated laser wakefield. Phys. Rev. Lett. 77, 5381– 5384 (1996).

    Article  ADS  CAS  Google Scholar 

  29. de Boeij, W. P., Pshenichnikov, M. S. & Wiersma, D. A. Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies. Ann. Rev. Phys. Chem. 49 , 99–123 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Schoenlein, R. W. et al. Femtosecond X-ray pulses at 0.4 angstrom generated by 90 degrees Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236–238 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support for this work from the Department of Energy and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Kapteyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, R., Backus, S., Zeek, E. et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164–166 (2000). https://doi.org/10.1038/35018029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018029

  • Springer Nature Limited

This article is cited by

Navigation