Skip to main content
Log in

DNH deoxyribonucleohelicates: self assembly of oligonucleosidic double-helical metal complexes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

NUCLEIC acids, because of their key biological role, are prime targets for the design of either analogues that may mimic some of their features or of complementary ligands that may selectively bind to and react with them for regulation or reaction. Whereas there has been much work on the latter topic since the elucidation of the double-helical structure of DNA1,2, comparatively little has been done on structural and/or functional models, probably owing to the lack of self-organizing molecular systems. Here we present a class of artificial systems, the nucleohelicates, which are of interest from both points of view because they combine the double-helical structure of the double-stranded metal complexes, the helicates2,3, with the selective interaction features of nucleic-acid bases. These functionalized species allow the study of structural effects on the formation of the double helix and on the binding to other entities, in particular to nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watson, J. D. & Crick, F. H. C. Nature 171, 737–738 (1953).

    Article  ADS  CAS  Google Scholar 

  2. Lehn, J-M. et al. Proc. natn. Acad. Sci. U.S.A. 84, 2565–2569 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Lehn, J-M. & Rigault, A. Angew. Chem., int. Edn Engl. 27, 1095–1097 (1988).

    Article  Google Scholar 

  4. Alpha, B., Anklam, E., Deschenaux, R., Lehn, J-M. & Pietraskiewicz, M. Helv. chim. Acta 71, 1042–1052 (1988).

    Article  CAS  Google Scholar 

  5. Schneider, K. C. & Benner, S. A. J. Am. chem. Soc. 112, 453–455 (1990).

    Article  CAS  Google Scholar 

  6. Hoffmann, S., Witkowski, W. & Schubert, H. Z. Chem. 14, 154 (1974).

    Article  CAS  Google Scholar 

  7. Takenvoto, K., Kawabuko, F. & Kondo, K. Makromol. Chem. 148, 131–134 (1971).

    Article  Google Scholar 

  8. Browne, D. T., Eisinger, J. & Leonard, N. J. J. Am. chem. Soc. 90, 7302–7323 (1968).

    Article  CAS  Google Scholar 

  9. Leonard, N. J. Acc. chem. Res. 12, 423–429 (1979).

    Article  CAS  Google Scholar 

  10. Golankiewicz, K. & Celewicz, L. Polish J. Chem. 52, 1035–1038 (1978).

    CAS  Google Scholar 

  11. Sasaki, I., Dufour, M-N. & Gaudemer, A. Nouv. J. Chem. 6, 341–344 (1982).

    CAS  Google Scholar 

  12. Saito, I., Sugiyama, H., Matsuura, T. & Fukuyama, K. Tetrahedron Lett. 4467–4470 (1985).

  13. Kim, M. & Gokel, G. JCS Chem. Commun. 1686–1688 (1987).

  14. Sessler, J. L., Magdal, D. & Hugdall, J. J. Inclus. Phen. molec. Recogn. 7, 19–26 (1989).

    Article  CAS  Google Scholar 

  15. Pauling, L. & Corey, R. B. Nature 171, 346 (1953).

    Article  ADS  CAS  Google Scholar 

  16. Lehn, J-M. Angew. Chem., int. Edn Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  17. Felsenfeld, G., Danies, D. R. & Rich, A. J. Am. chem. Soc. 79, 2023–2024 (1957).

    Article  CAS  Google Scholar 

  18. Moser, H. E. & Dervan, P. E. Science 238, 645–650 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Francois, J-C., Saison-Behmoaras, T. & Helene, C. Nucleid Acids Res. 16, 11431–11440 (1988).

    Article  CAS  Google Scholar 

  20. Rodriguez-Ubis, J-C., Alpha, B., Plancherel, D. & Lehn, J-M. Helv. chim. Acta 67, 2264–2269 (1984).

    Article  CAS  Google Scholar 

  21. Banwarth, W. Helv. chim. Acta 71, 1517–1527 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koert, U., Harding, M. & Lehn, JM. DNH deoxyribonucleohelicates: self assembly of oligonucleosidic double-helical metal complexes. Nature 346, 339–342 (1990). https://doi.org/10.1038/346339a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346339a0

  • Springer Nature Limited

This article is cited by

Navigation