Skip to main content
Log in

Chemical model for Viking biology experiments: implications for the composition of the martian regolith

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE 1976 Mars Viking biology experiments were designed to detect life by observing the products of biochemical reactions. In the labelled-release (LR) experiments1–4, about 25 nmol of 14C-labelled gases evolved when regolith samples were moistened with nutrient solution. About 22% of the products reabsorbed upon second injection. As a biological test the LR results were positive, although the reabsorption was not readily explained. In the gas-exchange (GEX) experiments, up to 800 nmol of O2 gas was evolved when samples were humidified5,6, suggesting that the martian regolith might contain a strong chemical oxidant which caused the LR results. Several chemical models have been proposed7,8 but no self-consistent explanation of all of the observations has been achieved. Here we propose a chemical model for these biology experiments in which the reactants are an inorganic nitrate salt, which has been partly photolysed by ultraviolet light, and a sparingly soluble metal carbonate such as calcite. The model reproduces the main effects seen, indicating that nitrates are present in the martian regolith as well as calcite (or some other carbonate with similar solubility).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein, H. P. et al. Science 194, 99–105 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Levin, G. V. & Straat, P. A. Science 194, 1322–1329 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Levin, G. V. & Straat, P. A. J. geophys. Res. 82, 4663–4667 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Levin, G. V. & Straat, P. A. J. molec. Evol. 14, 167–183 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Oyama, V. I., Berdahl, B. J. & Carle, G. C. Nature 265, 110–114 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Oyama, V. I. & Berdahl, B. J. J. geophys. Res. 82, 4669–4676 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Klein, H. P. Rev. Geophys. Space Phys. 17, 1655–1662 (1979).

    Article  ADS  Google Scholar 

  8. Klein, H. P. J. molec. Evol. 14, 161–165 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Levin, G. V. & Straat, P. A. J. molec. Evol. 14, 185–197 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Ponnamperuma, C., Shimoyama, A., Yamada, M., Hobo, T. & Pal, R. Science 197, 455–457 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Ballou, E. V., Wood, P. C., Wydeven, T., Lehwalt, M. E. & Mack, R. E. Nature 271, 644–645 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Oyama, V. I. & Berdahl, B. J. J. molec. Evol. 14, 199–210 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Huguenin, R. L., Miller, K. J. & Harwood, W. S. J. molec. Evol. 14, 103–132 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Levin, G. V. & Straat, P. A. Icarus 45, 494–516 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Banin, A. & Rishpon, J. J. molec. Evol. 14, 133–152 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Nussinov, M. D., Chernyak, Y. B. & Ettinger, J. L. Nature 274, 859–861 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Narayanswamy, K. L. Trans. Faraday Soc. 31, 1411–1412 (1935).

    Article  CAS  Google Scholar 

  18. Allen, A. O. & Ghormley, J. A. J. chem. Phys. 15, 208–209 (1947).

    Article  ADS  CAS  Google Scholar 

  19. Doigan, P. & Davis, T. W. J. phys. Chem. 56, 764–766 (1952).

    Article  CAS  Google Scholar 

  20. Hennig, G., Lees, R. & Matheson, M. S. J. chem. Phys. 21, 664–668 (1953).

    Article  ADS  CAS  Google Scholar 

  21. Chen, T. H. & Johnson, E. R. J. phys. Chem. 66, 2249–2253 (1962).

    Article  CAS  Google Scholar 

  22. Yurmazova, T. A., Koval, L. N. & Serikov, L. V. Khimiya Vysokikh Energii 17, 151–155 (1983).

    CAS  Google Scholar 

  23. Papee, H. M. & Petriconi, G. L. Nature 204, 142–144 (1964).

    Article  ADS  CAS  Google Scholar 

  24. Clark, B. C. & VanHart, D. C. Icarus 45, 370–378 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Toon, O. B., Pollack, J. B. & Sagen, C. Icarus 30, 663–696 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Yung, Y. L., Strobel, D. F., Kong, T. Y. & McElroy, M. B. Icarus 30, 26–41 (1977).

    Article  ADS  CAS  Google Scholar 

  27. McElroy, M. B., Yung, Y. L. & Nier, A. O. Science 194, 70–72 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Plumb, R. C., Thivierge, R. F. & Xu, W. W. J. phys. Chem. 91, 6074–6076 (1987).

    Article  CAS  Google Scholar 

  29. Kuhn, W. R. & Atreya, S. K. J. molec. Evol. 14, 57–64 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences Ch. 11 (McGraw-Hill, New York, 1969).

    Google Scholar 

  31. Brown, F. S. et al. Rev. Sci. Instr. 49, 139–182 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plumb, R., Tantayanon, R., Libby, M. et al. Chemical model for Viking biology experiments: implications for the composition of the martian regolith. Nature 338, 633–635 (1989). https://doi.org/10.1038/338633a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338633a0

  • Springer Nature Limited

This article is cited by

Navigation