Skip to main content
Log in

A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ATRIAL natriuretic peptide (ANP) is a polypeptide hormone whose effects include the induction of diuresis, natriuresis and vasorelaxation1. One of the earliest events following binding of ANP to receptors on target cells is an increase in cyclic GMP concentration, indicating that this nucleotide might act as a mediator of the physiological effects of the hormone2,3. Guanylate cyclase exists in at least two different molecular forms: a soluble haem-containing enzyme consisting of two summits4,5 and a non-haem-containing transmembrane protein having a single subunit6. It is the membrane form of guanylate cyclase that is activated following binding of ANP to target cells3,7,8. We report here the isolation, sequence and expression of a complementary DNA clone encoding the membrane form of guanylate cyclase from rat brain. Transfec-tion of this cDNA into cultured mammalian cells results in expression of guanylate cyclase activity and ANP-binding activity. The ANP receptor/guanylate cyclase represents a new class of mammalian cell-surface receptors which contain an extracellular ligand-binding domain and an intracellular guanylate cyclase catalytic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flynn, T. G & Davies, P. L. Biochem. J. 232, 313–321 (1985).

    Article  CAS  Google Scholar 

  2. Hamet, P. et al. Biochem. biophys. Res. Commun. 123, 515–527 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Waldman, S. A., Rapoport, R. M. & Murad, F. J. biol. Chem. 259, 14332–14334 (1984).

    CAS  PubMed  Google Scholar 

  4. Gerzer, R., Bohme, E., Hoffman, F. & Schultz, G. FEBS Lett. 132, 71–74 (1981).

    Article  CAS  Google Scholar 

  5. Kamisaki, Y. et al. J. biol. Chem. 261, 7236–7241 (1986).

    CAS  PubMed  Google Scholar 

  6. Singh, S. et al. Nature 334, 708–712 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Tremblay, J. et al. FEBS Lett. 181, 17–22 (1985).

    Article  CAS  Google Scholar 

  8. Winquist, R. J. et al. Proc. natn. Acad. Sci. U.S.A. 81, 7661–7664 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Von Heijne, G. Eur. J. Biochem. 133, 17–21 (1983).

    Article  CAS  Google Scholar 

  10. Radany, E. W., Gerzer, R. & Garbers, D.L. J. biol. Chem. 258, 8346–8351 (1983).

    CAS  PubMed  Google Scholar 

  11. Ramarao, C. S. & Garbers, D. L. J. biol. Chem. 263, 1524–1529 (1988).

    CAS  PubMed  Google Scholar 

  12. Kuno, T. et al. J. biol. Chem. 261, 5817–5823 (1986).

    CAS  PubMed  Google Scholar 

  13. Paul, A. K., Marala, R. B., Jaiswal, R. K. & Sharma, R. K. Science 235, 1224–1226 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Maack, T. et al. Science 238, 675–678 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Leitman, D. C. et al. J. biol. Chem. 263, 3720–3728 (1988).

    CAS  PubMed  Google Scholar 

  16. Fuller, F. et al. J. biol. Chem. 263, 9395–9401 (1988).

    CAS  PubMed  Google Scholar 

  17. Yarden, Y. et al. Nature 323, 226–232 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Hanks, S. K., Quinn, A. M. & Hunter, T. Science 241, 42–53 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Koesling, D. et al. FEBS Lett 239, 29–34 (1988).

    Article  CAS  Google Scholar 

  20. Kataoka, T., Broek, D. & Wigler, M. Cell 43, 493–505 (1985).

    Article  CAS  Google Scholar 

  21. Kozak, M. Nucleic Acids Res. 12, 3873–3893 (1984).

    Article  CAS  Google Scholar 

  22. Mueller, P. P. & Hinnebusch, A. G. Cell 45, 201–207 (1986).

    Article  CAS  Google Scholar 

  23. Yip, C. C., Laing, L. D. & Flynn, T. G. J. biol. Chem. 260, 8229–8232 (1985).

    CAS  PubMed  Google Scholar 

  24. Takayanagi, R. et al. J. biol. Chem. 262, 12104–12113 (1987).

    CAS  PubMed  Google Scholar 

  25. Shimomura, H., Dangott, L. J. & Garbers, D.L. J. biol. Chem. 261, 15778–15782 (1986).

    CAS  PubMed  Google Scholar 

  26. Hansbrough, J. R. & Garbers, D. L. J. biol. Chem. 256, 1447–1452 (1981).

    CAS  PubMed  Google Scholar 

  27. Bentley, J. K., Tubb, D. J. & Garbers, D. L. J. biol. Chem. 261, 14859–14862 (1986).

    CAS  PubMed  Google Scholar 

  28. Cullen, B. R. Meth. Enzym. 152, 684–704 (1987).

    Article  CAS  Google Scholar 

  29. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  30. Ullrich, A. et al. Nature 309, 418–425 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinkers, M., Garbers, D., Chang, MS. et al. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338, 78–83 (1989). https://doi.org/10.1038/338078a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338078a0

  • Springer Nature Limited

This article is cited by

Navigation