Skip to main content

Advertisement

Log in

Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand–receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70:665–699

    Article  CAS  PubMed  Google Scholar 

  2. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    Article  PubMed  Google Scholar 

  3. Delporte C, Poloczek P, Tastenoy M, Winand J, Christophe J (1992) Atrial natriuretic peptide binds to ANP-R1 receptors in neuroblastoma cells or is degraded extracellularly at the Ser-Phe bond. Eur J Pharmacol 227:247–256

    Article  CAS  PubMed  Google Scholar 

  4. Kishimoto I, Tokudome T, Nakao K, Kangawa K (2011) Natriuretic peptide system: an overview of studies using genetically engineered animal models. FEBS J 278:1830–1841

    Article  CAS  PubMed  Google Scholar 

  5. Pandey KN (2005) Biology of natriuretic peptides and their receptors. Peptides 26:901–932

    Article  CAS  PubMed  Google Scholar 

  6. Pandey KN (2011) The functional genomics of guanylyl cyclase/natriuretic peptide receptor-A: perspectives and paradigms. FEBS J 278:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anand-Srivastava MB, Trachte GJ (1993) Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 45:455–497

    CAS  PubMed  Google Scholar 

  8. Garbers DL (1992) Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell 71:1–4

    Article  CAS  PubMed  Google Scholar 

  9. Khurana ML, Pandey KN (1993) Receptor-mediated stimulatory effect of atrial natriuretic factor, brain natriuretic peptide, and C-type natriuretic peptide on testosterone production in purified mouse Leydig cells: activation of cholesterol side-chain cleavage enzyme. Endocrinology 133:2141–2149

    Article  CAS  PubMed  Google Scholar 

  10. Pandey KN, Singh S (1990) Molecular cloning and expression of murine guanylate cyclase/atrial natriuretic factor receptor cDNA. J Biol Chem 265:12342–12348

    CAS  PubMed  Google Scholar 

  11. Duda T, Goraczniak RM, Sharma RK (1991) Site-directed mutational analysis of a membrane guanylate cyclase cDNA reveals the atrial natriuretic factor signaling site. Proc Natl Acad Sci USA 88:7882–7886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mani I, Garg R, Pandey KN (2016) Role of FQQI motif in the internalization, trafficking, and signaling of guanylyl-cyclase/natriuretic peptide receptor-A in cultured murine mesangial cells. Am J Physiol Renal Physiol 310:F68–F84

    Article  CAS  PubMed  Google Scholar 

  13. Mani I, Garg R, Tripathi S, Pandey KN (2015) Subcellular trafficking of guanylyl cyclase/natriuretic peptide receptor-A with concurrent generation of intracellular cGMP. Biosci Rep. doi:10.1042/BSR20150136

    PubMed  PubMed Central  Google Scholar 

  14. Drewett JG, Garbers DL (1994) The family of guanylyl cyclase receptors and their ligands. Endocr Rev 15:135–162

    Article  CAS  PubMed  Google Scholar 

  15. Pandey KN (2010) Ligand-mediated endocytosis and intracellular sequestration of guanylyl cyclase/natriuretic peptide receptors: role of GDAY motif. Mol Cell Biochem 334:81–98

    Article  CAS  PubMed  Google Scholar 

  16. Anand-Srivastava MB (2005) Natriuretic peptide receptor-C signaling and regulation. Peptides 26:1044–1059

    Article  CAS  PubMed  Google Scholar 

  17. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    CAS  PubMed  Google Scholar 

  18. Sharma RK (2002) Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 230:3–30

    Article  CAS  PubMed  Google Scholar 

  19. Duda T, Pertzev A, Sharma RK (2013) The ANF-RGC gene motif (669)WTAPELL(675) is vital for blood pressure regulation: biochemical mechanism. Biochemistry 52:2337–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma RK, Duda T, Makino CL (2016) Integrative signaling networks of membrane guanylate cyclases: biochemistry and physiology. Front Mol Neurosci 9:83

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pandey KN, Nguyen HT, Sharma GD, Shi SJ, Kriegel AM (2002) Ligand-regulated internalization, trafficking, and down-regulation of guanylyl cyclase/atrial natriuretic peptide receptor-A in human embryonic kidney 293 cells. J Biol Chem 277:4618–4627

    Article  CAS  PubMed  Google Scholar 

  22. Duda T, Pertzev A, Sharma RK (2014) Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca(2+). Front Mol Neurosci 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cao L, Wu J, Gardner DG (1995) Atrial natriuretic peptide suppresses the transcription of its guanylyl cyclase-linked receptor. J Biol Chem 270:24891–24897

    Article  CAS  PubMed  Google Scholar 

  24. Pandey KN (1992) Kinetic analysis of internalization, recycling and redistribution of atrial natriuretic factor-receptor complex in cultured vascular smooth-muscle cells. Ligand-dependent receptor down-regulation. Biochem J 288(Pt 1):55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garg R, Pandey KN (2005) Regulation of guanylyl cyclase/natriuretic peptide receptor-A gene expression. Peptides 26:1009–1023

    Article  CAS  PubMed  Google Scholar 

  26. Kumar P, Garg R, Bolden G, Pandey KN (2010) Interactive roles of Ets-1, Sp1, and acetylated histones in the retinoic acid-dependent activation of guanylyl cyclase/atrial natriuretic peptide receptor-A gene transcription. J Biol Chem 285:37521–37530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pandey KN, Nguyen HT, Garg R, Khurana ML, Fink J (2005) Internalization and trafficking of guanylyl (guanylate) cyclase/natriuretic peptide receptor A is regulated by an acidic tyrosine-based cytoplasmic motif GDAY. Biochem J 388:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma GD, Nguyen HT, Antonov AS, Gerrity RG, von Geldern T, Pandey KN (2002) Expression of atrial natriuretic peptide receptor-A antagonizes the mitogen-activated protein kinases (Erk2 and P38MAPK) in cultured human vascular smooth muscle cells. Mol Cell Biochem 233:165–173

    Article  CAS  PubMed  Google Scholar 

  29. Tripathi S, Pandey KN (2012) Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes the vascular endothelial growth factor-stimulated MAPKs and downstream effectors AP-1 and CREB in mouse mesangial cells. Mol Cell Biochem 368:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Das S, Periyasamy R, Pandey KN (2012) Activation of IKK/NF-kappaB provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice. Physiol Genomics 44:430–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi SJ, Vellaichamy E, Chin SY, Smithies O, Navar LG, Pandey KN (2003) Natriuretic peptide receptor A mediates renal sodium excretory responses to blood volume expansion. Am J Physiol Renal Physiol 285:F694–F702

    Article  CAS  PubMed  Google Scholar 

  33. Subramanian U, Kumar P, Mani I, Chen D, Kessler I, Periyasamy R, Raghavaraju G, Pandey KN (2016) Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice. Physiol Genomics 48:477–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vellaichamy E, Khurana ML, Fink J, Pandey KN (2005) Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. J Biol Chem 280:19230–19242

    Article  CAS  PubMed  Google Scholar 

  35. Pandey KN (1993) Stoichiometric analysis of internalization, recycling, and redistribution of photoaffinity-labeled guanylate cyclase/atrial natriuretic factor receptors in cultured murine Leydig tumor cells. J Biol Chem 268:4382–4390

    CAS  PubMed  Google Scholar 

  36. Rathinavelu A, Isom GE (1991) Differential internalization and processing of atrial-natriuretic-factor B and C receptor in PC12 cells. Biochem J 276(Pt 2):493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van den Akker F, Zhang X, Miyagi M, Huo X, Misono KS, Yee VC (2000) Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406:101–104

    Article  PubMed  Google Scholar 

  38. Pandey KN, Kumar R, Li M, Nguyen H (2000) Functional domains and expression of truncated atrial natriuretic peptide receptor-A: the carboxyl-terminal regions direct the receptor internalization and sequestration in COS-7 cells. Mol Pharmacol 57:259–267

    CAS  PubMed  Google Scholar 

  39. Pandey KN (2010) Small peptide recognition sequence for intracellular sorting. Curr Opin Biotechnol 21:611–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ceresa BP, Kao AW, Santeler SR, Pessin JE (1998) Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol Cell Biol 18:3862–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang F, Khvorova A, Marshall W, Sorkin A (2004) Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem 279:16657–16661

    Article  CAS  PubMed  Google Scholar 

  42. Pandey KN (2015) Endocytosis and trafficking of natriuretic peptide receptor-A: potential role of short sequence motifs. Membranes (Basel) 5:253–287

    Article  CAS  Google Scholar 

  43. Koh GY, Nussenzveig DR, Okolicany J, Price DA, Maack T (1992) Dynamics of atrial natriuretic factor-guanylate cyclase receptors and receptor-ligand complexes in cultured glomerular mesangial and renomedullary interstitial cells. J Biol Chem 267:11987–11994

    CAS  PubMed  Google Scholar 

  44. Maack T (1996) Role of atrial natriuretic factor in volume control. Kidney Int 49:1732–1737

    Article  CAS  PubMed  Google Scholar 

  45. Dickey DM, Flora DR, Potter LR (2011) Antibody tracking demonstrates cell type-specific and ligand-independent internalization of guanylyl cyclase a and natriuretic peptide receptor C. Mol Pharmacol 80:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Somanna NK, Pandey AC, Arise KK, Nguyen V, Pandey KN (2013) Functional silencing of guanylyl cyclase/natriuretic peptide receptor-A by microRNA interference: analysis of receptor endocytosis. Int J Biochem Mol Biol 4:41–53

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brackmann M, Schuchmann S, Anand R, Braunewell KH (2005) Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons. J Cell Sci 118:2495–2505

    Article  CAS  PubMed  Google Scholar 

  48. Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126

    Article  PubMed  Google Scholar 

  49. Law HT, Lin AE, Kim Y, Quach B, Nano FE, Guttman JA (2011) Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci Rep 1:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schutze S, Machleidt T, Adam D, Schwandner R, Wiegmann K, Kruse ML, Heinrich M, Wickel M, Kronke M (1999) Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem 274:10203–10212

    Article  CAS  PubMed  Google Scholar 

  51. Smani Y, Docobo-Perez F, Lopez-Rojas R, Dominguez-Herrera J, Ibanez-Martinez J, Pachon J (2012) Platelet-activating factor receptor initiates contact of Acinetobacter baumannii expressing phosphorylcholine with host cells. J Biol Chem 287:26901–26910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwartz V, Kruttgen A, Weis J, Weber C, Ostendorf T, Lue H, Bernhagen J (2012) Role for CD74 and CXCR4 in clathrin-dependent endocytosis of the cytokine MIF. Eur J Cell Biol 91:435–449

    Article  CAS  PubMed  Google Scholar 

  53. Ivanov AI (2008) Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 440:15–33

    Article  CAS  PubMed  Google Scholar 

  54. Schlegel R, Dickson RB, Willingham MC, Pastan IH (1982) Amantadine and dansylcadaverine inhibit vesicular stomatitis virus uptake and receptor-mediated endocytosis of alpha 2-macroglobulin. Proc Natl Acad Sci USA 79:2291–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chow JC, Condorelli G, Smith RJ (1998) Insulin-like growth factor-I receptor internalization regulates signaling via the Shc/mitogen-activated protein kinase pathway, but not the insulin receptor substrate-1 pathway. J Biol Chem 273:4672–4680

    Article  CAS  PubMed  Google Scholar 

  56. Ray E, Samanta AK (1996) Dansyl cadaverine regulates ligand induced endocytosis of interleukin-8 receptor in human polymorphonuclear neutrophils. FEBS Lett 378:235–239

    Article  CAS  PubMed  Google Scholar 

  57. Ray E, Samanta AK (1997) Receptor-mediated endocytosis of IL-8: a fluorescent microscopic evidence and implication of the process in ligand-induced biological response in human neutrophils. Cytokine 9:587–596

    Article  CAS  PubMed  Google Scholar 

  58. Donaldson JG, McPherson PS (2009) Membrane trafficking heats up in Pavia. Golgi meeting on membrane trafficking in global cellular responses. EMBO Rep 10:132–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533

    Article  CAS  PubMed  Google Scholar 

  60. Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117

    Article  CAS  PubMed  Google Scholar 

  61. Gotte M, Sofeu Feugaing DD, Kresse H (2004) Biglycan is internalized via a chlorpromazine-sensitive route. Cell Mol Biol Lett 9:475–481

    PubMed  Google Scholar 

  62. Nawa M, Takasaki T, Yamada K, Kurane I, Akatsuka T (2003) Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J Gen Virol 84:1737–1741

    Article  CAS  PubMed  Google Scholar 

  63. Kuhn DA, Vanhecke D, Michen B, Blank F, Gehr P, Petri-Fink A, Rothen-Rutishauser B (2014) Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol 5:1625–1636

    Article  PubMed  PubMed Central  Google Scholar 

  64. Blitzer JT, Nusse R (2006) A critical role for endocytosis in Wnt signaling. BMC Cell Biol 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pandey KN (2005) Internalization and trafficking of guanylyl cyclase/natriuretic peptide receptor-A. Peptides 26:985–1000

    Article  CAS  PubMed  Google Scholar 

  66. Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127:915–934

    Article  CAS  PubMed  Google Scholar 

  67. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089

    Article  CAS  PubMed  Google Scholar 

  68. Zhang J, Ferguson SS, Barak LS, Menard L, Caron MG (1996) Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem 271:18302–18305

    Article  CAS  PubMed  Google Scholar 

  69. Liu JP, Robinson PJ (1995) Dynamin and endocytosis. Endocr Rev 16:590–607

    CAS  PubMed  Google Scholar 

  70. McClure SJ, Robinson PJ (1996) Dynamin, endocytosis and intracellular signalling (review). Mol Membr Biol 13:189–215

    Article  CAS  PubMed  Google Scholar 

  71. Urrutia R, Henley JR, Cook T, McNiven MA (1997) The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc Natl Acad Sci USA 94:377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhan Y, Tremblay MR, Melian N, Carbonetto S (2005) Evidence that dystroglycan is associated with dynamin and regulates endocytosis. J Biol Chem 280:18015–18024

    Article  CAS  PubMed  Google Scholar 

  73. Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77:759–803

    Article  CAS  PubMed  Google Scholar 

  74. Johannessen LE, Pedersen NM, Pedersen KW, Madshus IH, Stang E (2006) Activation of the epidermal growth factor (EGF) receptor induces formation of EGF receptor- and Grb2-containing clathrin-coated pits. Mol Cell Biol 26:389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang LH, Sudhof TC, Anderson RG (1995) The appendage domain of alpha-adaptin is a high affinity binding site for dynamin. J Biol Chem 270:10079–10083

    Article  CAS  PubMed  Google Scholar 

  76. Praefcke GJ, Ford MG, Schmid EM, Olesen LE, Gallop JL, Peak-Chew SY, Vallis Y, Babu MM, Mills IG, McMahon HT (2004) Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis. EMBO J 23:4371–4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rappoport JZ, Benmerah A, Simon SM (2005) Analysis of the AP-2 adaptor complex and cargo during clathrin-mediated endocytosis. Traffic 6:539–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Warnock DE, Schmid SL (1996) Dynamin GTPase, a force-generating molecular switch. BioEssays 18:885–893

    Article  CAS  PubMed  Google Scholar 

  79. Marks B, Stowell MH, Vallis Y, Mills IG, Gibson A, Hopkins CR, McMahon HT (2001) GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410:231–235

    Article  CAS  PubMed  Google Scholar 

  80. Miwako I, Schmid SL (2005) Clathrin-coated vesicle formation from isolated plasma membranes. Methods Enzymol 404:503–511

    Article  CAS  PubMed  Google Scholar 

  81. Sever S, Damke H, Schmid SL (2000) Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol 150:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Song BD, Leonard M, Schmid SL (2004) Dynamin GTPase domain mutants that differentially affect GTP binding, GTP hydrolysis, and clathrin-mediated endocytosis. J Biol Chem 279:40431–40436

    Article  CAS  PubMed  Google Scholar 

  83. Song BD, Yarar D, Schmid SL (2004) An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin-mediated endocytosis in vivo. Mol Biol Cell 15:2243–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tremblay CS, Brown FC, Collett M, Saw J, Chiu SK, Sonderegger SE, Lucas SE, Alserihi R, Chau N, Toribio ML, McCormack MP, Chircop M, Robinson PJ, Jane SM, Curtis DJ (2016) Loss-of-function mutations of dynamin 2 promote T-ALL by enhancing IL-7 signalling. Leukemia 30:1993–2001

    Article  CAS  PubMed  Google Scholar 

  85. Feil R, Kemp-Harper B (2006) cGMP signalling: from bench to bedside. Conference on cGMP generators, effectors and therapeutic implications. EMBO Rep 7:149–153

    Article  CAS  PubMed  Google Scholar 

  86. Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. FASEB J 7:328–338

    Article  CAS  PubMed  Google Scholar 

  87. Kumar R, Cartledge WA, Lincoln TM, Pandey KN (1997) Expression of guanylyl cyclase-A/atrial natriuretic peptide receptor blocks the activation of protein kinase C in vascular smooth muscle cells. Role of cGMP and cGMP-dependent protein kinase. Hypertension 29:414–421

    Article  CAS  PubMed  Google Scholar 

  88. Sauro MD, Fitzpatrick DF (1990) Atrial natriuretic peptides inhibit protein kinase C activation in rat aortic smooth muscle. Pept Res 3:138–141

    CAS  PubMed  Google Scholar 

  89. Calebiro D, Nikolaev VO, Persani L, Lohse MJ (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms. Gevoni Bolden and Ms. Meaghan Bloodworth for their excellent technical help and Mrs. Kamala Pandey for her help in the preparation of the manuscript. We thank Dr. Sandra Schmid for providing a gift of wild-type and mutant dynamin construct. This research was supported by the National Institutes of Health Grants (HL057531 and HL062147).

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash N. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somanna, N.K., Mani, I., Tripathi, S. et al. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A. Mol Cell Biochem 441, 135–150 (2018). https://doi.org/10.1007/s11010-017-3180-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3180-0

Keywords

Navigation