Skip to main content
Log in

Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The elongation factors EF-Tu and EF-G interact with ribosomes during protein synthesis1,2: EF-Tu presents incoming aminoacyl transfer RNA to the programmed ribosome as an EF-Tu-GTP-tRNA ternary complex and EF-G promotes translocation of peptidyl-tRNA and its associated messenger RNA from the A to the P site after peptidyl transfer. Both events are accompanied by ribosome-dependent GTP hydrolysis. Here we use chemical probes to investigate the possible interaction of these factors with ribosomal RNA in E. coli ribosomes. We observe EF-G-dependent footprints in vitro and in vivo around position 1,067 in domain II of 23S rRNA, and in the loop around position 2,660 in domain VI. EF-Tu gives an overlapping footprint in vitro at positions 2,655 and 2,661, but shows no effect at position 1,067. The 1,067 region is the site of interaction of the antibiotic thiostrepton2, which prevents formation of the EF-G–GTP–ribosome complex and is a site for interaction with the GTPase-related protein L11 (ref. 3). The universally conserved loop in the 2,660 region4 is the site of attack by the RNA-directed cytotoxins α-sarcin5 and ricin6, whose effects abolish translation and include the loss of elongation factor-dependent functions7 in eukaryotic ribosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaziro, Y. Biochim. biophys. Acta 505, 95–127 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Lucas-Lenard, J. & Lipmann, F. A. Rev. Biochem. 40, 409–448 (1971).

    Article  CAS  Google Scholar 

  3. Schmidt, F. J., Thompson, J., Lee, K., Dijk, J. & Cundliffe, E. J. biol Chem. 266, 12301–12305 (1981).

    Google Scholar 

  4. Noller, H. F. A. Rev. Biochem. 53, 119–162 (1984).

    Article  CAS  Google Scholar 

  5. Endo, Y. & Wool, I. G. J. biol. Chem. 257, 9054–9060 (1982).

    CAS  PubMed  Google Scholar 

  6. Endo, Y., Mitsui, K., Motizuki, M. & Tsurugi, K. J. biol. Chem. 262, 5908–5912 (1987).

    CAS  PubMed  Google Scholar 

  7. Fernandez-Puentes, C. & Vazquez, D. FEBS Lett 78, 143–146 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Bodley, J. W., Zieve, F. J. & Lin, L. J. biol. Chem. 45, 5662–5667 (1970).

    Google Scholar 

  9. Hershey, J. W. B. & Monro, R. E. J. molec. Biol. 18, 68–76 (1966).

    Article  CAS  PubMed  Google Scholar 

  10. Eckstein, F., Kettler, M. & Parmeggiani, A. Biochem. biophys. Res. Commun. 45, 1151–1158 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Moazed, D., Stern, S. & Noller, H. F. J. Molec. Biol. 187, 399–416 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Wolf, H., Chinali, G. & Parmeggiani, A. Proc. natn. Acad. Sci. U.S.A. 71, 4910–4914 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Yokosawa, H., Inoue-Yokosawa, N., Arai, K., Kawakita, M. & Kaziro, Y. J. biol. Chem. 248, 375–377 (1973).

    CAS  PubMed  Google Scholar 

  14. Bodley, J. W., Lin, L. & Highland, J. H. Biochim. biophys. Acta 91, 1406–1411 (1970).

    Google Scholar 

  15. Sköld, S. Nucleic Acids Res. 11, 4923–4932 (1983).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maassen, J. A. & Möller, W. J. biol Chem. 253, 2777–2783 (1978).

    CAS  PubMed  Google Scholar 

  17. Möller, W. in Ribosomes (eds Nomura, M., Tissières, A. & Lengyel, P.) 711–731 (Cold Spring Harbor Laboratory, New York, 1974).

    Google Scholar 

  18. Richman, N. & Bodley, J. W. Proc. natn. Acad. Sci. U.S.A. 69, 688–689 (1972).

    Article  ADS  Google Scholar 

  19. Cabrer, B., Vazquez, D. & Modolell, J. Proc. natn. Acad. Sci. U.S.A. 69, 733–736 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Miller, D. Proc. natn. Acad. Sci. U.S.A. 69, 752–755 (1972).

    Article  ADS  CAS  Google Scholar 

  21. Richter, D. Biochim. biophys. Acta 46, 1850–1856 (1972).

    CAS  Google Scholar 

  22. Beauclerk, A. A., Cundliffe, E. & Dijk, J. J. biol. Chem. 259, 6559–6563 (1984).

    CAS  PubMed  Google Scholar 

  23. Moazed, D., Van Stolk, J., Douthwaite, S. & Noller, H. F. J. molec. Biol. 191, 483–493 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Robertson, J. M., Urbanke, C., Chinali, G., Wintermeyer, W. & Parmeggiani, A. J. molec. Biol. 189, 653–662 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Stern, S., Moazed, D. & Noller, H. F. Meth. Enzym. (in the press).

  26. Nirenberg, M. & Leder, P. Science 145, 1399–1407 (1964).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Moldave, K. A. Rev. Biochem. 54, 1109–1150 (1985).

    Article  CAS  Google Scholar 

  28. Lake, J. A. A. Rev. Biochem. 54, 507–530 (1985).

    Article  CAS  Google Scholar 

  29. Louie, A., Ribeiro, N. S., Reid, B. R. & Jurnak, F. J. biol. Chem. 259, 5010–5016 (1984).

    CAS  PubMed  Google Scholar 

  30. Robertson, J. M. & Wintermeyer, W. J. molec. Biol. 151, 57–79 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moazed, D., Robertson, J. & Noller, H. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334, 362–364 (1988). https://doi.org/10.1038/334362a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334362a0

  • Springer Nature Limited

This article is cited by

Navigation