Skip to main content
Log in

Depletion of cytosolic free calcium induced by photosynthesis

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Cytosolic free calcium is widely believed to behave as a second messenger for a wide variety of metabolic and developmental processes in plant cells1–3. Thus, it is expected that environmental stimuli should provoke a change in the concentration of cytosolic free calcium ([Ca2+]c) which then elicits some further response by the cell. However, although spatial differences in [Ca2+]c have been observed in plant cells4,5, direct measurement of a temporal change of [Ca2+]c in response to an environmental stimulus has so far been restricted to the transient rise, largely complete within 2 s, which occurs during an action potential6. This paucity of data is largely due to the difficulties associated with measurement of [Ca2+]cin plant cells7. We show here that Ca2+-selective microelectrodes can be used to report photosynthetically-related changes of [Ca2+]c in the characean alga Nitellopsis. We propose that the light-induced depletion of [Ca2+]c constitutes a fundamental signal which enables the rate of extrachloroplastic metabolism to be geared to photosynthetic processes in the chloroplast. However, light-induced activation of the electrogenic H+ pump at the plasma membrane is independent of changes in [Ca2+]c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanson, J. B. & Trewavas, A. J. New Phytol. 90, 1–18 (1982).

    Article  CAS  Google Scholar 

  2. Marme, D. & Dieter, P. in Calcium and Cell Function Vol. IV (ed. Cheung, W. Y.) 263–311 (Academic, New York, 1983).

    Google Scholar 

  3. Hepler, P. K. & Wayne, R. O. A. Rev. Pl. Physiol. 36, 397–439 (1985).

    Article  CAS  Google Scholar 

  4. Brownlee, C. & Wood, J. W. Nature 320, 624–626 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Keith, C. H., Ratan, R., Maxfield, F. R., Bajer, A. & Shelanski, M. L. Nature 316, 848–850 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Williamson, R. E. & Ashley, C. C. Nature 296, 647–651 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Clarkson, D. T. in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.) 443–447 (Plenum, New York, 1986).

    Book  Google Scholar 

  8. Spanswick, R. M. & Williams, E. J. J. exp. Bot. 15, 193–200 (1964).

    Article  CAS  Google Scholar 

  9. Spanswick, R. M. Biochim. biophys. Acta 332, 387–398 (1974).

    Article  CAS  Google Scholar 

  10. Hansen, U.-P. J. Membrane Biol. 41, 197–224 (1978).

    Article  Google Scholar 

  11. Weisenseel, M. H. & Ruppert, H. K. Planta 137, 225–229 (1977).

    Article  CAS  Google Scholar 

  12. Sanders, D. & Slayman, C. L. J. gen. Physiol. 80, 377–402 (1982).

    Article  CAS  Google Scholar 

  13. Mimura, T. & Tazawa, M. Protoplasma 118, 49–55 (1983).

    Article  CAS  Google Scholar 

  14. Sanders, D., Hansen, U-P. & Gradmann, D. in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.) 415–416 (Plenum, New York, 1986).

    Book  Google Scholar 

  15. Kreimer, G., Melkonian, M., Holtum, J. A. M. & Latzko, E. Planta 166, 515–523 (1985).

    Article  CAS  Google Scholar 

  16. Kreimer, G., Melkonian, M. & Latzko, E. FEBS Lett. 180, 253–258 (1985).

    Article  CAS  Google Scholar 

  17. Muto, S. FEBS Lett. 147, 161–164 (1982).

    Google Scholar 

  18. Kirst, G. O. & Bisson, M. A. Planta 155, 287–295 (1982).

    Article  CAS  Google Scholar 

  19. Stitt, M., Hertzog, B. & Heldt, H. W. Pl. Physiol. 75, 548–553 (1984).

    Article  CAS  Google Scholar 

  20. Foyer, C., Walker, D. & Latzko, E. Z. Pflanzenphysiol. 107, 457–465 (1982).

    Article  CAS  Google Scholar 

  21. Valles, K. L. M., Proudlove, M. O., Beechey, R. B. & Moore, A. L. Biochem. Soc. Trans. 12, 851–852 (1984).

    Article  CAS  Google Scholar 

  22. Brooks, A. & Farquhar, G. D. Planta 165, 397–406 (1985).

    Article  CAS  Google Scholar 

  23. Moore, A. L. & Akerman, K. E. O. Biochem. biophys. Res. Commun. 109, 513–517 (1982).

    Article  CAS  Google Scholar 

  24. Stitt, M., Lilley, R. M. & Heldt, H. W. Pl. Physiol. 70, 971–977 (1982).

    Article  CAS  Google Scholar 

  25. Miller, A. J., Parsons, A., Jennings, I. R. & Sanders, D. in Plant Membrane Transport (eds Beilby, M. J., Smith, J. R. & Walker, N. A.) (Australian Academy, in the press).

  26. Sanders, D. & Miller, A. J. in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.) 149–156 (Plenum, New York, 1986).

    Book  Google Scholar 

  27. Hogg, J., Williams, E. J. & Johnston, R. J. J. theor. Biol. 24, 317–334 (1969).

    Article  CAS  Google Scholar 

  28. Tsien, R. Y. & Rink, T. J. Biochim. biophys. Acta 599, 623–628 (1980).

    Article  CAS  Google Scholar 

  29. Marquardt, D. W. J. Soc. ind. appl. Math. 11, 431–441 (1963).

    Article  Google Scholar 

  30. Lee, C. O. in Ion Selective Microelectrodes and their Use in Excitable Tissues (eds Syková, E., Huik, P. & Vyklichý, L.) 47–52 (Plenum, New York, 1981).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, A., Sanders, D. Depletion of cytosolic free calcium induced by photosynthesis. Nature 326, 397–400 (1987). https://doi.org/10.1038/326397a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326397a0

  • Springer Nature Limited

This article is cited by

Navigation