Skip to main content
Log in

Sporadic shutdown of North Atlantic deep water production during the Glacial–Holocene transition?

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Pulsations in the production of North Atlantic deep water (NADW) have been implicated in generating drastic climatic fluctuations during the Glacial–Holocene (G/H) transition1–3. The stable isotope record of benthic foraminifera in high-resolution cores from the Norwegian Sea suggests that such pulsations did occur4. Although the question of exact timing (and mechanism) is still open there is little doubt that NADW pulsations were important in climatic history because the rate of NADW production influences the rate of advection of heat to the northern North Atlantic5. Here we report that a sporadic shutdown of NADW may be recognizable in deep-sea carbonates with normal (low) sedimentation rates. Hence the possibility arises that relatively short-lived events (∼1,000–2,000 yr) in deep circulation can be mapped over large areas of the sea floor, despite the detrimental effects of bioturbation on signal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olausson, E. Progr. Oceanogr. 3, 221–252 (1965).

    Article  ADS  Google Scholar 

  2. Berger, W. H. & Killingley, J. S. J. mar. Res. 40, 27–38 (1982).

    Google Scholar 

  3. Broecker, W. S., Peteet, D. M. & Rind, D. Nature 315, 21–26 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Jansen, E., & Erlenkeuser, H. Palaeogeogr. Palaeoclimatol. Palaeoecol. 49, 189–206 (1985).

    Article  Google Scholar 

  5. Berger, W. H., & Labeyrie, L. (eds) Abrupt climatic change—evidence and implications (Reidel, Dordrecht, in the press).

  6. Vincent, E., Killingley, J. S. & Berger, W. H. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 221–230 (1981).

    Article  Google Scholar 

  7. Berger, W. H. & Killingley, J. S. Mar. Geol. 45, 93–125 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Berger, W. H., Killingley, J. S., Metzler, C. V. & Vincent, E. Quat. Res. 23, 258–271 (1985).

    Article  CAS  Google Scholar 

  9. Mantyla, A. W. & Reid, J. L. Deep-Sea Res. 30, 805–833 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Vincent, E., Killingley, J. S. & Berger, W. H. Nature 289, 639–643 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Berger, W. H. & Vincent, E. Geol. Rdsch. 75/1, 249–269 (1986).

    Article  Google Scholar 

  12. Woodruff, F., Savin, S. M. & Douglas, R. G. Mar. Micropaleont. 5, 3–11 (1980).

    Article  ADS  Google Scholar 

  13. Belanger, P. E., Curry, W. B. & Matthews, R. K. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 205–220 (1981).

    Article  Google Scholar 

  14. Graham, D. W., Corliss, B. H., Bender, M. L. & Keigwin, L. D. Mar. Micropaleont. 6, 483–497 (1981).

    Article  ADS  Google Scholar 

  15. Duplessy, J. -C. et al. Quat. Res. 21, 225–234 (1984).

    Article  Google Scholar 

  16. Corliss, B. Nature 314, 435–438 (1985).

    Article  ADS  Google Scholar 

  17. Berger, W. H. & Killingley, J. S. Science 197, 563–566 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Berger, W. H., Killingley, J. S. & Vincent, E. Nature 314, 156–158 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Mangerud, J., Andersen, S. T., Berglund, B. E. & Bonner, J. J. Boreas 3, 109–128 (1974).

    Article  Google Scholar 

  20. Shackleton, N. J. & Opdyke, N. D. Quat. Res. 3, 39–55 (1973).

    Article  CAS  Google Scholar 

  21. Kroopnick, P. M. Deep-Sea Res. A32, 57–84 (1985).

    Article  ADS  Google Scholar 

  22. Weyl, P. K. Met. Monogr. 8, 37–62 (1968).

    Google Scholar 

  23. Duplessy, J. -C., Chenouard, L. & Vila, F. Science 188, 1208–1209 (1975).

    Article  ADS  CAS  Google Scholar 

  24. Streeter, S. S. & Shackleton, N. J. Science 203, 168–170 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Boyle, E. A. & Keigwin, L. D. Science 218, 784–787 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Shackleton, N. J., Imbrie, J. & Hall, M. A. Earth planet. Sci. Lett. 65, 233–244 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Shackleton, N. J. Eos 66, 292 (1985).

    Google Scholar 

  28. Gordon, A. L. Science 227, 1030–1033 (1985).

    Article  ADS  CAS  Google Scholar 

  29. Vincent, E. Mar. Biol. 9, 1–235 (1976).

    Google Scholar 

  30. Prell, W. L. & Hutson, W. H. Science 206, 454–456 (1979).

    Article  ADS  CAS  Google Scholar 

  31. Shackleton, N. in The Fate of Fossil Fuel CO2 in the Oceans, 401–427 (Plenum, New York, 1977).

    Book  Google Scholar 

  32. Ruddiman, W. F. & McIntyre, A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 35, 145–214 (1981).

    Article  CAS  Google Scholar 

  33. Ruddiman, W. F. & McIntyre, A. Quat. Res. 16, 125–134 (1981).

    Article  Google Scholar 

  34. Mix, A. C. & Ruddiman, W. F. Quat. Sci. Rev. 4, 59–108 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, W., Vincent, E. Sporadic shutdown of North Atlantic deep water production during the Glacial–Holocene transition?. Nature 324, 53–55 (1986). https://doi.org/10.1038/324053a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324053a0

  • Springer Nature Limited

This article is cited by

Navigation