Skip to main content
Log in

How a gap junction maintains its structure

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes1,2. Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loewenstein, W. R. Physiol. Rev. 61, 829–913 (1981).

    Article  CAS  Google Scholar 

  2. Bennett, M. V. L. & Goodenough, D. A. Neurosci. Res. Prog. Bull. 16, 415 (1978).

    Google Scholar 

  3. Heuser, J. E. & Reese, T. S. in The Neurosciences Fourth Study Program (eds Schmitt, F. O. & Worden, F. G.) (MIT Press, Cambridge, Massachusetts, in the press).

  4. Raviola, E., Goodenough, D. A. & Raviola, G. J. Cell Biol. 87, 273–279 (1980).

    Article  CAS  Google Scholar 

  5. Meller, K. Anat. Embryol. 163, 321–330 (1981).

    Article  CAS  Google Scholar 

  6. Tadvalkar, G. & Pinto da Silva, P. J. Cell Biol. 96, 1279–1287 (1983).

    Article  CAS  Google Scholar 

  7. Peracchia, C. & Peracchia, L. L. J. Cell Biol. 87, 719–727 (1980).

    Article  CAS  Google Scholar 

  8. Hill, T. L. Statistical Mechanics Ch. 6 (McGraw-Hill, New York, 1956).

    MATH  Google Scholar 

  9. Markovics, J., Glass, L. & Maul, G. G. Expl Cell Res. 85, 443–451 (1974).

    Article  CAS  Google Scholar 

  10. Perelson, A. S. Expl Cell Res. 112, 309–321 (1978).

    Article  CAS  Google Scholar 

  11. Pearson, T. L., Chan, S. I., Lewis, B. & Engelman, D. M. Biophys. J. 43, 167–174 (1983).

    Article  CAS  Google Scholar 

  12. Unwin, P. N. T. & Zampighi, G. Nature 283, 545–549 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Marcelja, S. Biochim. biophys. Acta 455, 1–7 (1976).

    Article  CAS  Google Scholar 

  14. Owicki, J. C. & McConnell, H. M. Proc. natn. Acad. sci. U.S.A. 76, 4750–4754 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Edelman, J. B. thesis, California Inst. Technol., Pasadena (1978).

  16. Goodenough, D. A. Cold Spring Harb. Symp. quant. Biol. 40, 37–43 (1976).

    Article  CAS  Google Scholar 

  17. Rand, R. P. A. Rev. Biophys. Bioengng 10, 277–314 (1981).

    Article  CAS  Google Scholar 

  18. Preus, D., Johnson, R. & Sheridan, J. J. ultrastruct. Res. 77, 248–262 (1981).

    Article  CAS  Google Scholar 

  19. Johnson, R., Hammer, M., Sheridan, J. & Revel, J. P. Proc. natn. Acad. sci. U.S.A. 71, 4536–4540 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, J., Abney, J. & Owicki, J. How a gap junction maintains its structure. Nature 310, 316–318 (1984). https://doi.org/10.1038/310316a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310316a0

  • Springer Nature Limited

This article is cited by

Navigation