Skip to main content
Log in

A new imaging proportional counter using a Penning gas improves energy resolution

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

In recent years Siegmund et al.1,2have attempted to combine in one detector the position resolution of the multi-wire proportional counter (MWPC)3–5or the parallel-plate imaging proportional counter (PPIPC)6,7with the energy resolution of the gas-scintillation proportional counter (GSPC)8–11, using light from avalanches in a PPIPC. By counting the light flashes from individual primary electrons, Fano factor limited energy resolution was obtained but only for energies below 2 keV. The position resolution was ≈350 µm over an active diameter of 25mm. Sipilä and coworkers12,13used Penning gas14,15mixtures to improve the energy resolution to 11% at 6 keV. However, this was achieved at gas gains of <50, and in a single wire proportional counter (PC) without imaging capability. We have achieved similar resolution with gains up to 550 by using a Penning gas in a uniform field. Although satisfactory for energy measurement down to 0.1 keV this gain is not high enough for good position resolution in a PPIPC. We therefore use another stage of uniform field avalanch-ing to boost the overall gain to values >105. The concept of two-stage avalanching was first reported by Charpak et al.16and used by Breskin et al.17. We have built and tested a laboratory version of such a detector (Fig. 1), which we call the Penning gas imager (PGI). A Penning gas and a two-stage parallel grid avalanche geometry are combined with a wedge and strip anode (WSA) position read-out system18. Preliminary experimental energy resolution is 12% FWHM at 6 keV (24% FWHM at 1.5 keV) and the position resolution is 100 µ m FWHM at 1.5 keV. This compares with ≈ 10% and ≈ 1 mm for the GSPC and ≈18% and a few hundred micrometres for the MWPC. The particle background can be reduced by an estimated 99% using an anticoincidence technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegmund, O. H. W., Culhane, J. L., Mason, I. M. & Sanford, P. W. Nature 295, 678–679 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Siegmund, O. H. W. et al. IEEE Trans. nucl. Sci. NS- 30, 503–507 (1983).

    Article  ADS  Google Scholar 

  3. Bouclier, R., Charpak, G., Dimcovski, Z., Fischer, G. & Sauli, F. Nucl. instrum. Meth. 88, 149–161 (1970).

    Article  ADS  CAS  Google Scholar 

  4. Charpak, G. & Sauli, F. Nucl. instrum. Meth. 162, 405–428 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Bleeker, J. A. M., Huizenga, H., den Boggende, A. J. F. & Brinkman, A. IEEE Trans. nucl. Sci. NS-27, 176–180 (1980).

    Article  ADS  Google Scholar 

  6. Stumpel, J. W., Sanford, P.W. & Goddard, H. F. J. Phys. E. 6, 397–400 (1973).

    Article  ADS  Google Scholar 

  7. Mason, I. M. et al. IEEE Trans. nucl. Sci. NS- 31 (in the press).

  8. Hoan, N. N. Nucl. instrum. Meth. 154, 597–601 (1978).

    Article  ADS  Google Scholar 

  9. Davelaar, J., Peacock, A. & Taylor, B. G. IEEE Trans. nucl. Sci. NS- 29, 142–145 (1982).

    Article  ADS  Google Scholar 

  10. Charpak, G., Policarpo, A. & Sauli, F. IEEE Trans. nucl. Sci. NS- 27, 212–215 (1980).

    Article  ADS  Google Scholar 

  11. Ku, W. H.-M., Hailey, C. J. & Vartanian, M. H. Nucl. instrum. Meth. 196, 63–67 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Sipilä, H. Nucl. instrum. Meth. 133, 251–252 (1976).

    Article  ADS  Google Scholar 

  13. Sipilä, H. IEEE Trans. nucl. Sci. NS- 26, 181–185 (1979).

    Article  ADS  Google Scholar 

  14. Penning, F. M. Physica 1, 1028–1044 (1934).

    Article  ADS  CAS  Google Scholar 

  15. Kruithof, A. A. & Penning, F. M. Physica 4, 430–449 (1937).

    Article  ADS  CAS  Google Scholar 

  16. Charpak, G. et al. CERN Rep. 78–05 (1978).

  17. Breskin, A. et al. Nucl. instrum. Meth. 161, 19–34 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Anger, H. O. Instrum. Soc. Am. Trans. 5, 311–334 (1966).

    CAS  Google Scholar 

  19. Alkhazov, G. D., Komar, A. P. & Vorob'ev, A. A. Nucl. instrum. Meth. 48, 1–12 (1967).

    Article  ADS  CAS  Google Scholar 

  20. Charles, M. W. & Cooke, B. A. Nucl. instrum. Meth. 61, 31–36 (1968).

    Article  ADS  Google Scholar 

  21. Bunemann, O., Cranshaw, T. E. & Harvey, J. A. Can. J. Res. 27 A, 191206 (1949).

  22. Schwarz, H. E., Thornton, J. & Mason, I. M. Nucl. instrum. Meth. (in the press).

  23. Smith, G. C., Fischer, J. & Radeka, V. IEEE Trans. nucl. Sci. NS- 31 (in the press).

  24. Mason, I. M. thesis, Univ. London (1981).

  25. Mason, I. M. & Culhane, J. L. IEEE Trans. nucl. Sci. NS- 30, 485–490 (1983).

    Article  ADS  Google Scholar 

  26. Druyvesteyn, M. J. & Penning, F. M. Rev. Mod. Phys. 12, 87–104 (1940).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, H., Mason, I. A new imaging proportional counter using a Penning gas improves energy resolution. Nature 309, 532–534 (1984). https://doi.org/10.1038/309532a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309532a0

  • Springer Nature Limited

Navigation