Skip to main content
Log in

CsI-bowl: an ancillary detector for exit channel selection in γ-ray spectroscopy experiments

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A particle detector array designed for light-charged particles, known as the CsI-bowl, was built for exit channel selection for in-beam \(\gamma\)-ray spectroscopy experiments. This device is composed of 64 CsI(Tl) detectors, organized in a structure reminiscent of a tea-bowl. High quantum efficiency photodiodes, characterized by their minimal mass, were employed to collect scintillation light. Its design, construction, particle identification resolution, and its effectiveness in relation to exit channel selection are described in this paper. In source tests, the optimal figure of merit for the identification of \(\alpha\)-particles and \(\gamma\)-rays using the charge comparison method was found to be 3.3 and 12.1 for CsI detectors coupled to photodiodes and avalanche photodiodes, respectively. The CsI-bowl demonstrated effectiveness in identifying particles, specifically the emission of protons and \(\alpha\)-particles in the \(^{58}\)Ni(\(^{19}\)F, xpyn) fusion–evaporation reaction, thereby enabling the selection of the desired exit channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https:/www./doi.org/10.57760/sciencedb.10201 and https://cstr.cn/31253.11.sciencedb.10201.

References

  1. L.Y. Lee, The gammasphere. Nucl. Phys. A 520, c641–c655 (1990). https://doi.org/10.1016/0375-9474(90)91181-P

    Article  ADS  Google Scholar 

  2. J. Simpson, The euroball spectrometer. Z. Phys. A 358, 139–143 (1997). https://doi.org/10.1007/s002180050290

    Article  ADS  Google Scholar 

  3. S. Akkoyun, A. Algora, B. Alikhani et al., AGATA - advanced gamma tracking array. Nucl. Instrum. Methods Phys. A 668, 26–58 (2012). https://doi.org/10.1016/j.nima.2011.11.081

    Article  ADS  Google Scholar 

  4. D.G. Sarantites, P.F. Hua, M. Devlin et al., “The Microball’’ design, instrumentation and response characteristics of a 4\(\pi\)-multidetector exit channel-selection device for spectroscopic and reaction mechanism studies with Gammasphere. Nucl. Instrum. Methods Phys. A 381, 418–432 (1996). https://doi.org/10.1103/PhysRevC.104.044314

    Article  ADS  Google Scholar 

  5. J. Gál, G. Hegyesi, J. Molnár et al., The VXI electronics of the DIAMANT particle detector array. Nucl. Instrum. Methods Phys. A 516, 502–510 (2004). https://doi.org/10.1016/j.nima.2003.08.158

    Article  ADS  Google Scholar 

  6. M.J. Koskelo, I.J. Koskelo, B. Sielaff, Comparison of analog and digital signal processing systems using pulsers. Nucl. Instrum. Methods Phys. A 422, 373–378 (1999). https://doi.org/10.1016/S0168-9002(98)00986-3

    Article  ADS  Google Scholar 

  7. D.W. Luo, H.Y. Wu, Z.H. Li et al., Performance of digital data acquisition system in \(\gamma\)-ray spectroscopy. Nucl. Sci. Tech. 32, 79 (2021). https://doi.org/10.1007/s41365-021-00917-8

    Article  Google Scholar 

  8. S. Mitra, L. Wielopolski, G. Hendrey, Comparison of a digital and an analog signal processing system for neutron inelastic \(\gamma\)-ray spectrometry. Nucl. Instrum. Methods Phys. A 61, 1463–1468 (2004). https://doi.org/10.1016/S0168-9002(98)00986-3

    Article  Google Scholar 

  9. C.L. Lan, X.C. Ruan, G. Liu et al., Particle identification using CsI(Tl) crystal with three different methods. Nucl. Sci. Tech. 19, 354 (2008). https://doi.org/10.1016/S1001-8042(09)60018-X

    Article  Google Scholar 

  10. R. Grzywacz, Applications of digital pulse processing in nuclear spectroscopy. Nucl. Instrum. Methods Phys. B 204, 649–659 (2003). https://doi.org/10.1016/S0168-583X(02)02146-8

    Article  ADS  Google Scholar 

  11. M.S. Badawi, S. Noureddine, Y.N. Kopatch et al., Characterization of the efficiency of a cubic NaI detector with rectangular cavity for axially positioned sources. J. Instrum. 15, P02013 (2020). https://doi.org/10.1088/1748-0221/15/02/P02013

    Article  Google Scholar 

  12. M.S. Badawi, M. Abd-Elzaher, A.A. Thabet et al., An empirical formula to calculate the full energy peak efficiency of scintillation detectors. Appl. Radiat. Isot. 74, 46–49 (2013). https://doi.org/10.1016/j.apradiso.2012.12.011

    Article  Google Scholar 

  13. M.I. Abbas, M.S. Badawi, I.N. Ruskov et al., Calibration of a single hexagonal NaI(Tl) detector using a new numerical method based on the efficiency transfer method. Nucl. Instrum. Methods Phys. A 771, 110–114 (2015). https://doi.org/10.1016/j.nima.2014.10.056

    Article  ADS  Google Scholar 

  14. J.C.C. Melle, G.J. Nieuwenhuizen, R.J. Meijer et al., Pulse shape analysis of CsI(Tl)-PD signals induced by 6–20 MeV \(\alpha\)-particles and protons. Nucl. Instrum. Methods Phys. A 277, 584–586 (1989). https://doi.org/10.1016/0168-9002(89)90791-2

    Article  ADS  Google Scholar 

  15. S.K. Liu, Q. Yue, S.T. Lin et al., Measurement of intrinsic radioactive backgrounds from the \(^{137}\)Cs and U/Th chains in CsI(Tl) crystals. Chin. Phys. C 39, 046002 (2015). https://doi.org/10.1088/1674-1137/39/4/046002/meta

    Article  ADS  Google Scholar 

  16. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk et al., High-energy-resolution scintillator: Ce\(^{3+}\) activated LaBr\(_3\). Appl. Phys. Lett. 79, 1573–1575 (2001). https://doi.org/10.1063/1.1385342

    Article  ADS  Google Scholar 

  17. H. Cheng, B.H. Sun, L.H. Zhu et al., Intrinsic background radiation of LaBr\(_3\)(Ce) detector via coincidence measurements and simulations. Nucl. Sci. Tech. 31, 99 (2020). https://doi.org/10.1007/s41365-020-00812-8

    Article  Google Scholar 

  18. W. Lu, L. Wang, Y. Yuan et al., Monte Carlo simulation for performance evaluation of detector model with a monolithic LaBr\(_3\)(Ce) crystal and SiPM array for \(\gamma\) radiation imaging. Nucl. Sci. Tech. 33, 107 (2022). https://doi.org/10.1007/s41365-022-01081-3

    Article  Google Scholar 

  19. S. Usuda, A. Mihara, H. Abe, Rise time spectra of \(\alpha\) and \(\beta\)(\(\gamma\)) rays from solid and solution sources with several solid scintillators. Nucl. Instrum. Methods Phys. A 321, 247–253 (1992). https://doi.org/10.1016/0168-9002(92)90396-L

    Article  ADS  Google Scholar 

  20. E.V. Sysoeva, V.A. Tarasov, O.V. Zelenskaya et al., The study of \(\alpha\)/\(\gamma\) ratio for inorganic scintillation detectors. Nucl. Instrum. Methods Phys. A 414, 274 (1998). https://doi.org/10.1016/S0168-9002(98)00011-4

    Article  ADS  Google Scholar 

  21. R.H. Bartram, A. Lempicki, Efficiency of electron-hole pair production in scintillators. J. Lumin. 68, 225–240 (1996). https://doi.org/10.1016/0022-2313(96)00026-9

    Article  Google Scholar 

  22. R.F. Chen, H.S. Xu, R.R. Fan et al., Property measurement of the CsI (Tl) crystal prepared at IMP. Chin. Phys. C 32, 135 (2008). https://doi.org/10.1088/1674-1137/32/2/012

    Article  ADS  Google Scholar 

  23. D.X. Wang, C.J. Lin, L. Yang et al., Compact 16-channel integrated charge-sensitive preamplifier module for silicon strip detectors. Nucl. Sci. Tech. 31, 48 (2020). https://doi.org/10.1007/s41365-020-00755-0

    Article  Google Scholar 

  24. XIA LLC, https://www.xia.com

  25. ROOT Data analysis framework, https://root.cern.ch

  26. W. Skulski, M. Momayezi, Particle identification in CsI(Tl) using digital pulse shape analysis. Nucl. Instrum. Methods Phys. A 458, 759–771 (2001). https://doi.org/10.1016/S0168-9002(00)00938-4

    Article  ADS  Google Scholar 

  27. Y. Kaschuck, B. Esposito, Neutron/\(\gamma\)-ray digital pulse shape discrimination with organic scintillators. Nucl. Instrum. Methods Phys. A 551, 420–428 (2005). https://doi.org/10.1016/j.nima.2005.05.071

    Article  ADS  Google Scholar 

  28. F. Amorini, C. Boiano, G. Cardella et al., Investigation of the dependence of CsI(Tl) scintillation time constants and intensities on particle’s energy, charge and mass through direct fitting of digitized waveforms. IEEE Trans. Nucl. Sci. 59, 1772 (2012). https://doi.org/10.1109/TNS.2012.2201499

    Article  ADS  Google Scholar 

  29. M. Bendel, R. Gernhauser, W.F. Henning et al., RPID - a new digital particle identification algorithm for CsI(Tl) scintillators. Eur. Phys. J. A 49, 69 (2013). https://doi.org/10.1140/epja/i2013-13069-8

    Article  ADS  Google Scholar 

  30. M. Moszyński, D. Wolski, T. Ludziejewski et al., Particle identification by digital charge comparison method applied to CSl(TI) crystal coupled to photodiode. Nucl. Instrum. Methods Phys. A 336, 587–590 (1993). https://doi.org/10.1016/0168-9002(93)91267-Q

    Article  ADS  Google Scholar 

  31. Z. Zuo, H.-R. Liu, Y.-C. Yan et al., Adaptability of n-\(\gamma\) discrimination and filtering methods based on plastic scintillation. Nucl. Sci. Tech. A 32, 28 (2021). https://doi.org/10.1007/s41365-021-00917-8

    Article  Google Scholar 

  32. F. Benrachi, B. Chambon, B. Cheynis et al., Investigation of the performance of CsI(Tl) for charged particle identification by pulse-shape analysis. Nucl. Instrum. Methods Phys. A 281, 137–142 (1989). https://doi.org/10.1016/0168-9002(89)91225-4

    Article  ADS  Google Scholar 

  33. J. Williams, C. Andreoiu, G.C. Ball et al., The CsI ball ancillary detector array for TIP and TIGRESS at TRIUMF. Nucl. Instrum. Methods Phys. A 939, 1–9 (2019). https://doi.org/10.1016/j.nima.2019.05.069

    Article  ADS  Google Scholar 

  34. R.A. Bark, M. Lipoglavšek, S.M. Maliage et al., Aspects of nuclear physics research at iThemba LABS. South Africa. J. Phys. G 31, S1747 (2005). https://doi.org/10.1088/0954-3899/31/10/066/

    Article  Google Scholar 

  35. A. Gavron, Statistical model calculations in heavy ion reactions. Phys. Rev. C 21, 230 (1980). https://doi.org/10.1103/PhysRevC.21.230

    Article  ADS  Google Scholar 

  36. O. Tarasov, D. Bazin, LISE++: radioactive beam production with in-flight separators. Nucl. Instrum. Methods Phys. B 226, 4657–4664 (2008). https://doi.org/10.1016/j.nimb.2008.05.110

    Article  ADS  Google Scholar 

  37. R. Palit, H.C. Jain, P.K. Joshi et al., Shape coexistence in \(^{72}\)Se. Phys. Rev. C 63, 024313 (2001). https://doi.org/10.1103/PhysRevC.63.024313

    Article  ADS  Google Scholar 

  38. J. Döring, G.D. Johns, M.A. Riley et al., Band structures and alignment properties in \(^{74}\)Se. Phys. Rev. C 57, 6 (1998). https://doi.org/10.1103/PhysRevC.57.2912

    Article  Google Scholar 

  39. F.G.A. Quarati, P. Dorenbos, J.van der Biezen et al., Scintillation and detection characteristics of high-sensitivity CeBr\(_3\) gamma-ray spectrometers. Nucl. Instrum. Methods Phys. A 719, 596-604 (2013). https://doi.org/10.1016/j.nima.2013.08.005.

  40. J.M. Regis, G.S. Simpson, A. Blanc et al., Germanium-gated \(\gamma\)-\(\gamma\) fast timing of excited states in fission fragments using the EXILL &FATIMA spectrometer. Nucl. Instrum. Methods Phys. A 763, 210-220 (2014). https://doi.org/10.1016/j.nima.2014.06.004. https://www.sciencedirect.com/science/article/abs/pii/S0168900214006998?via%3Dihub

  41. D. Bucurescu, I. Cata-Danil, G. Ciocan et al., The ROSPHERE \(\gamma\)-ray spectroscopy array. Nucl. Instrum. Methods Phys. A 837, 1–10 (2016). https://doi.org/10.1016/j.nima.2016.08.052

    Article  ADS  Google Scholar 

  42. C. Mihai, A.A. Pasternak, D. Filipescu et al., Side feeding patterns and nuclear lifetime determinations by the Doppler shift attenuation method in (\(\alpha\),\(n\)\(\gamma\)) reactions. Phys. Rev. C 81, 034314 (2010). https://doi.org/10.1103/PhysRevC.81.034314

    Article  ADS  Google Scholar 

  43. A. Dewald, S. Harissopulos, P. von Brentano, The differential plunger and the differential decay curve method for the analysis of recoil distance Doppler-shift data. Z. Phys. A 334, 163–175 (1989). https://doi.org/10.1007/BF01294217

    Article  ADS  Google Scholar 

  44. N. Marginean, D.L. Balabanski, D. Bucurescu et al., TIn-beam measurements of sub-nanosecond nuclear lifetimes with a mixed array of HPGe and LaBr\(_3\): Ce detectors. Eur. Phys. J. A 46, 329–336 (2010). https://doi.org/10.1140/epja/i2010-11052-7

    Article  ADS  Google Scholar 

  45. T. Teranishi, Y. Ueno, M. Osada et al., Pulse shape analysis of signals from SiPM-based CsI(Tl) detectors for low-energy protons: Saturation correction and particle identification. Nucl. Instrum. Methods Phys. A 989, 164967 (2021). https://doi.org/10.1016/j.nima.2020.164967

    Article  Google Scholar 

  46. Y. Sun, Z.-Y. Sun, Y.-H. Yu et al., Temperature dependence of CsI: Tl coupled to a PIN photodiode and a silicon photomultiplier. Nucl. Sci. Tech. 30, 27 (2019). https://doi.org/10.1007/s41365-019-0551-0

    Article  Google Scholar 

Download references

Acknowledgements

The exceptional skill demonstrated by the staff from the Crystal Group at IMPCAS during the construction of the CsI-bowl, as well as the outstanding collaboration with the Nuclear Reaction Group from the China Institute of Atomic Energy during preamplifier testing, is greatly appreciated. The authors also extend their gratitude toward the technical staff and accelerator group at iThemba LABS for their consistent support throughout the experiment.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Shuo Wang, Xing-Chi Han, Hong-Yi Wu, Zhi-Huan Li, and Shou-Yu Wang. The first draft of the manuscript was written by Xing-Chi Han and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the Major program of Natural Science Foundation of Shandong Province (No. ZR2020ZD30), the National Natural Science Foundation of China (Nos. 11775133, U2167202, U1432119).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, XC., Wang, S., Wu, HY. et al. CsI-bowl: an ancillary detector for exit channel selection in γ-ray spectroscopy experiments. NUCL SCI TECH 34, 133 (2023). https://doi.org/10.1007/s41365-023-01289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01289-x

Keywords

Navigation