Skip to main content
Log in

Sodium and potassium channels in demyelinated and remyelinated mammalian nerve

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Demyelination of peripheral axons initially causes failure of action potential conduction, probably because the internodal membrane lacks sodium channels1,2. However, Bostock and Sears3 showed that 3–14 days after demyelination of rat nerve with diphtheria toxin, some axons develop regenerative inward currents in the internodal membrane permitting continuous (non-saltatory) conduction. In nerves that have remyelinated or regenerated, the number of nodes per unit length of fibre characteristically increases greatly4,5. As the internodal membrane does not normally possess sodium channels1,2, both the earlier appearance of continuous conduction in the demyelinated nerve and the later presence of extra nodes in the remyelinated nerve require either a laying down of new sodium channels or a redistribution of the sodium channels in the original nodes. The present experiments examine the changes in the total number of sodium channels, measured by saxitoxin-binding capacity1, that occur in rabbit sciatic nerves which have been demyelinated in vivo with lysolecithin2,5 and then allowed to remyelinate. The results provide no evidence for the formation of new sodium channels during the early stage, when continuous conduction may develop, but show clearly that new channels are formed during remyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritchie, J. M. & Rogart, R. B. Proc. natn. Acad. Sci. U.S.A. 74, 211–215 (1977); Rev. Physiol. Biochem. Pharmac. 79, 1–50 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Chiu, S. Y. & Ritchie, J. M. Nature 284, 170–171 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Bostock, H. & Sears, T. A. J. Physiol., Lond. 280, 273–301 (1978).

    Article  CAS  Google Scholar 

  4. Cragg, B. G. & Thomas, P. K. J. Physiol., Lond. 171, 164–175 (1964).

    Article  CAS  Google Scholar 

  5. Hall, S. M. & Gregson, N. A. J. Cell Sci. 9, 769–789 (1971).

    CAS  PubMed  Google Scholar 

  6. Jacobs, J. M. & Cavanagh, J. B. J. Anat. 105, 295–306 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sherratt, R. M., Bostock, H. & Sears, T. A. Nature 283, 570–572 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Chiu, S. Y., Ritchie, J. M., Rogart, R. B. & Stagg, D. J. Physiol., Lond. 292, 149–166 (1979).

    Article  CAS  Google Scholar 

  9. Horackova, M., Nonner, W. & Stämpfli, R. Proc. int. Un. Physiol. Sci. 7, 198 (1968).

    Google Scholar 

  10. Blakemore, W. F., Eames, R. A., Smith, K. J. & McDonald, W. I. J. neurol. Sci. 33, 31–43 (1977).

    Article  CAS  Google Scholar 

  11. Smith, K. J. & Hall, S. M. J. neurol. Sci. 48, 201–219 (1980).

    Article  CAS  Google Scholar 

  12. Hall, S. M. & Gregson, N. A. J. Cell Sci. 9, 769–789 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, J., Rang, H. & Pellegrino, R. Sodium and potassium channels in demyelinated and remyelinated mammalian nerve. Nature 294, 257–259 (1981). https://doi.org/10.1038/294257a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294257a0

  • Springer Nature Limited

This article is cited by

Navigation