Skip to main content
Log in

Relative brain size and basal metabolic rate in terrestrial vertebrates

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Studies of the relationship between brain size and body size in terrestrial verteberates have a long history1–4. Demonstrations of regular relationships between brain and body size across species within selected vertebrate groups serve two purposes: (1) in comparison of species of different body size, empirically recognized ‘scaling effects’ can be taken into account; (2) empirical relationships may suggest useful working hypotheses regarding functional constraints (although they cannot directly reveal casual connections). It is widely accepted5,6 that brain size is scaled to keep pace with changes in body surface area (rather than volume), and this provides the basis for many interpretations of relative brain size. Re-examination of brain–body size relationships for large samples of species from three major vertebrate groups (mammals, birds, reptiles) now shows that there is no empirical foundation for the concept of scaling to body surface area. Instead, it seems that brain size may be linked to maternal metabolic turnover. This has implications not only for assessment of relative brain size in particular species, but also for pursuing links between brain size and ‘life strategies’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snell, O. Arch. Psychiatr. Nervkrankh. 23, 436–446 (1891).

    Article  Google Scholar 

  2. Dubois, E. Bull. Soc. Anthrop. Paris 8, 337–376 (1897).

    Google Scholar 

  3. Lapicque, L. C. r. Séanc. Soc. Biol. 5, 10 (1898).

    Google Scholar 

  4. Brandt, A. Bull. Soc. imp. nat. Moscow 40, 525–543 (1867).

    Google Scholar 

  5. Jerison, H. J. Evolution of the Brain and Intelligence (Academic, New York, 1973).

    Google Scholar 

  6. Bauchot, R. Brain Behav. Evol. 15, 1–18 (1978).

    Article  CAS  Google Scholar 

  7. Huxley, J. S. Problems of Relative Growth (Methuen, London, 1932).

    Google Scholar 

  8. Gould, S. J. Biol. Rev. 41, 587–640 (1966).

    Article  CAS  Google Scholar 

  9. Martin, R. D. Z. Morph. Anthrop. 71, 115–124 (1980).

    CAS  Google Scholar 

  10. Rubner, M. Z. Biol. 19, 535–562 (1883).

    Google Scholar 

  11. Kleiber, M. The Fire of Life: An Introduction to Animal Energetics (Wiley, New York, 1961).

    Google Scholar 

  12. Harvey, P. H. & Mace, G. M. in Current Problems in Sociobiology (Cambridge University Press, in the press).

  13. Hemmingsen, A. M. Rep. Steno Meml Hosp. 4, 7–58 (1950).

    Google Scholar 

  14. Hemmingsen, A. M. Rep. Steno Meml Hosp. 9, 1–110 (1960).

    Google Scholar 

  15. Lasiewski, R. C. & Dawson, W. R. Condor 69, 13–23 (1967).

    Article  Google Scholar 

  16. Dawson, T. J. & Hulbert, A. J. Am. J. Physiol. 218, 1233–1238 (1970).

    CAS  Google Scholar 

  17. Liu, C. T. & Higbee, G. A. J. appl. Physiol. 40, 101–104 (1976).

    Article  CAS  Google Scholar 

  18. Spector, W. S. Handbook of Biological Data (Saunders, Philadelphia, 1956).

    Google Scholar 

  19. Adams, T. in Comparative Physiology of Thermoregulation Vol. 2 (ed. Whittow, G. C.) 151–189 (Academic, New York, 1971).

    Google Scholar 

  20. Jarman, P. J. J. Zool. Lond. 166, 349–356 (1972).

    Article  Google Scholar 

  21. Ghubrial, L. I. Physiol. Zool. 43, 249–256 (1970).

    Article  Google Scholar 

  22. Brody, S. Bioenergetics and Growth (Rheinhold, New York, 1945).

    Google Scholar 

  23. Bauchot, R. & Stephen, H. Mammalia 30, 160–196 (1966); 33, 225–275 (1969).

    Article  Google Scholar 

  24. Crile, G. W. & Quiring, D. P. Ohio J. Sci. 40, 219–259 (1940).

    Google Scholar 

  25. von Bonin, G. J. gen. Physiol. 16, 379–389 (1937).

    Google Scholar 

  26. Count, E. W. Ann. N. Y. Acad. Sci. 46, 993–1122 (1947).

    Article  ADS  Google Scholar 

  27. Stephen, H., Bauchot, R. & Andy, O. J. in The Primate Brain (eds Nobak, C. R. & Montagna, W.) 289–297 (Appleton, New York, 1970).

    Google Scholar 

  28. Eisenberg, J. F. & Wilson, D. E. Evolution 32, 740–751 (1978).

    Article  Google Scholar 

  29. Crile, G. W. & Quiring, D. P. Ohio J. Sci. 40, 219–259 (1940).

    Google Scholar 

  30. Portmann, A. Alauda 14, 2–20 (1946); 15, 1–15 (1947).

    Google Scholar 

  31. Platel, R. in Biology of the Reptilia Vol. 9 (ed. Gans, C.) 147–171 (Academic, London, 1979).

    Google Scholar 

  32. Portmann, A. Biomorphology 1, 109–126 (1939); Rev. suisse zool. 72, 658–666 (1965).

    Google Scholar 

  33. Wirz, K. Acta anat. 63, 449–508 (1966).

    Article  Google Scholar 

  34. Martin, R. D. in Phylogeny of the Primates (eds Luckett, W. P. & Szalay, F. S.) 265–297 (Plenum, New York, 1975).

    Book  Google Scholar 

  35. Sacher, G. A. & Staffeldt, E. F. Am. Nat. 108, 593–616 (1974).

    Article  Google Scholar 

  36. Rudder, B. C. C. thesis, Univ. London (1979).

  37. Heinroth, O. in Tabulae Biologicae Vol. 5 (eds Oppenheimer, C. & Pincussen, L.) 716–741 (Junk, Berlin, 1930).

    Google Scholar 

  38. Rahn, H., Paganelli, C. V. & Ar, A. Resp. Physiol. 22, 297–309 (1974).

    Article  CAS  Google Scholar 

  39. Gould, S. J. Contr. Primatol. 5, 244–292 (1975).

    CAS  Google Scholar 

  40. Sacher, G. A. in CIBA Fdn Colloq. Ageing Vol. 5 (eds Wolstenholme, G. E. W. & O'Connor, M.) 115–133 (Churchill, London, 1959).

    Google Scholar 

  41. Müller, F. Verh. naturf. Ges. Basel 80, 1–31 (1969).

    Google Scholar 

  42. Western, D. Afr. J. Ecol. 17, 185–204 (1979).

    Article  Google Scholar 

  43. Payne, P. R. & Wheeler, E. F. Nature 215, 849–850, 1134–1136 (1967); Proc. Nutr. Soc. 27, 129–138 (1968).

    Article  ADS  CAS  Google Scholar 

  44. Leutenegger, W. Folia primatol. 20, 280–293 (1973).

    Article  CAS  Google Scholar 

  45. Robbins, C. T. & Robbins, B. L. Am. Nat. 114, 101–116 (1979).

    Article  Google Scholar 

  46. Clutton-Brock, T. H. & Harvey, P. H. J. Zool. Lond. 190, 309–323 (1980).

    Article  Google Scholar 

  47. Bakker, R. T. Evolution 27, 636–658 (1971); Nature 238, 81–85 (1972).

    Article  Google Scholar 

  48. Hopson, J. A. A. Rev. Ecol. Syst. 8, 429–448 (1977); in Biology of the Reptilia Vol. 9 (ed. Gans, C.) 39–146 (Academic, London, 1979).

    Google Scholar 

  49. Bennett, A. F. & Dalzell, B. Evolution 27, 170–174 (1973).

    Article  Google Scholar 

  50. Colbert, E. H. Am. Mus. Novit. 2076, 1–16 (1962).

    Google Scholar 

  51. Hopson, J. A. in A Cold Look at the Warm-blooded Dinosaurs (eds Thomas, R. D. K. & Olson, E. C.) 287–310 (AAAS, Washington, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293, 57–60 (1981). https://doi.org/10.1038/293057a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293057a0

  • Springer Nature Limited

This article is cited by

Navigation