Skip to main content

Advertisement

Log in

The Evolution of Brain Size in Ectothermic Tetrapods: Large Brain Mass Trades-Off with Lifespan in Reptiles

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

A Correction to this article was published on 17 March 2023

This article has been updated

Abstract

The evolution of brain size is constrained by the trade-off between the energetic costs allocated towards its maintenance and the cognitive advantages that come with a larger brain, leading to a paradox. The cognitive benefits of larger brains (e.g., high behavioural flexibility) mitigate extrinsic mortality factors, which may indirectly select for slower ageing that prolongs lifespan (“cognitive buffer hypothesis”). However, substantial energetic costs imposed by the maintenance of neural tissue is expected to compromise the energetic budget of large-brained organisms, and their investment in somatic maintenance and repair, thus accelerating ageing that shortens lifespan (the “disposable soma theory”). The relationship between lifespan and brain size has mostly been investigated in birds and mammals. Thus, whether these trade-offs express across ectothermic vertebrates remains to be addressed on a large-scale. Our study presents the first large-scale analysis of the brain size-lifespan relationship in ectothermic tetrapods (amphibians and reptiles). Using a dataset spanning 265 species, we performed phylogenetic linear models to investigate the predicted trade-off between variation in brain size and longevity. Our findings revealed a negative relationship between brain size and lifespan across reptiles, whereas no association was observed across amphibians. Thus, the relationship between life history and brain evolution in ectotherms does not follow the general pattern found across other vertebrates. Among ectotherms, the high metabolic cost of producing neural tissue seems to transcend the cognitive benefits of evolving a larger brain. Consequently, our findings suggest that natural selection favours optimization of the energetic economy over the fitness-advantages that cognitive benefits may offer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Accessibility Statement

All data used in the analyses and the associated metadata are available in Appendix S1. All codes used in the analyses are available in Appendix S3. Both data and codes in R software will be stored in Dryad and data DOI will be included at the end of the article.

Change history

References

  • Allman, J., McLaughlin, T., & Hakeem, A. (1993). Brain weight and lifespan in primate species. Proceedings of the National Academy of Sciences of the USA, 90, 118–122

  • Amiel, J. J., Tingley, R., & Shine, R. (2011). Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS One, 6(4), e18277

  • Barrickman, N. L., Bastian, M. L., Isler, K., & van Schaik, C. P. (2008). Life history costs and benefits of encephalization: a comparative test using data from long-term studies of primates in the wild. Journal of human evolution, 54, 568–590

    Article  PubMed  Google Scholar 

  • Barton, R. A., & Capellini, I. (2011). Maternal investment, life histories, and the costs of brain growth in mammals. Proceedings of the National Academy of Sciences of the USA, 108, 6169–6174

  • Black, D. G. (1983). Encephalization of Australian lizards. Unpublished MSc thesis, Monash University, Clayton, Australia

  • Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., & Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. Proceedings of the National Academy of Sciences, 113(9), 2532–2537

  • Buechel, S. D., Boussard, A., Kotrschal, A., van der Bijl, W., & Kolm, N. (2018). Brain size affects performance in a reversal-learning test. Proceedings of the Royal Society B: Biological Sciences, 285(1871), 20172031

  • Burghardt, G. M., Chiszar, D., Murphy, J. B., Romano, J., Walsh, T., & Manrod, J. (2002). Behavioral complexity, behavioral development, and play. Komodo dragons: biology and conservation, 79–89

  • Carey, J. R. (2003). Longevity: the biology and demography of life span. Princeton University Press

  • Chapple, D. G. (2003). Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetological Monographs, 17(1), 145–180

    Article  Google Scholar 

  • De Meester, G., Huyghe, K., & Van Damme, R. (2019). Brain size, ecology and sociality: a reptilian perspective. Biological Journal of the Linnean Society, 126(3), 381–391

    Article  Google Scholar 

  • Deaner, R. O., Barton, R. A., & van Schaik, C. P. (2003). Primate brains and life histories renewing the connection (Pp. 233–265). In P. M. Kappeler And M. E. Pereira, eds. Primate life histories and socioecology. The University of Chicago Press, Chicago, IL

  • Deaner, R. O., Isler, K., Burkart, J., & Van Schaik, C. (2007). Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain, behavior and evolution, 70(2), 115–124

    Article  PubMed  Google Scholar 

  • Dubois, E. (1913). On the relation between the quantity of brain and the size of the body in vertebrates. KNAB, 16, 647–668

    Google Scholar 

  • Dunbar, R. I. M., & Shultz, S. (2007). Evolution in the social brain. Science, 317, 1344–1347

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg, J. F., & Wilson, D. E. (1981). Relative brain size and demographic strategies in didelphid marsupials. The American Naturalist, 118, 1–15

    Article  Google Scholar 

  • Ernst, C. H., Ernst, C. H., & Lovich, J. E. (2009). Turtles of the united states and Canada. JHU Press

  • Font, E., García-Roa, R., Pincheira-Donoso, D., & Carazo, P. (2019). Rethinking the effects of body size on the study of brain size evolution. Brain, behavior and evolution, 93(4), 182–195

    Article  PubMed  Google Scholar 

  • Freckleton, R. P. (2002). On the misuse of residuals in ecology: regression of residuals vs. multiple regression. Journal of Animal Ecology, 542–545

  • Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160, 712–726

    Article  CAS  PubMed  Google Scholar 

  • Freckleton, R. P. (2009). The seven deadly sins of comparative analysis. Journal of Evolutionary Biology, 22(7), 1367–1375

    Article  CAS  PubMed  Google Scholar 

  • García-Berthou, E. (2001). On the misuse of residuals in ecology: testing regression residuals vs. the analysis of covariance. Journal of Animal Ecology, 708–711

  • Gillooly, J. F., & McCoy, M. W. (2014). Brain size varies with temperature in vertebrates. PeerJ, 2, e301

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Lagos, C., Sol, D., & Reader, S. M. (2010). Large‐brained mammals live longer. Journal of Evolutionary Biology, 23, 1064–1074

    Article  PubMed  Google Scholar 

  • Gould, S. J. (1975). Allometry in primates, with emphasis on scaling and the evolution of the brain. Contributions to primatology, 5, 244–292

    CAS  PubMed  Google Scholar 

  • Green, A. J. (2001). Mass/length residuals: measures of body condition or generators of spurious results? Ecology, 82(5), 1473–1483

    Article  Google Scholar 

  • Güntürkün, O., Stacho, M., & Ströckens, F. (2020). The brains of reptiles and birds. Evolutionary Neuroscience, 159–212

  • Harraan, D. (1955). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology, 11, 298–300

    Article  Google Scholar 

  • Hartemink, N., & Caswell, H. (2018). Variance in animal longevity: contributions of heterogeneity and stochasticity. Population Ecology, 60, 89–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel, S., Collins, C. E., Wong, P., & Kaas, J. H. (2007). Cellular scaling rules for primate brains. Proceedings of the National Academy of Sciences, 104(9), 3562–3567

  • Hofman, M. A. (1983). Energy metabolism, brain size and longevity in mammals. The Quarterly Review of Biology, 58, 495–512

    Article  CAS  PubMed  Google Scholar 

  • Isler, K., & Van Schaik, C. P. (2006). Metabolic costs of brain size evolution. Biology letters, 2(4), 557–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Isler, K., & van Schaik, C. P. (2009). The expensive brain: a framework for explaining evolutionary changes in brain size. Journal of Human Evolution, 57, 392–400

    Article  PubMed  Google Scholar 

  • Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press

    Google Scholar 

  • Jetz, W., & Pyron, R. A. (2018). The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nature Ecology & Evolution, 2, 850–858

    Article  Google Scholar 

  • Jiménez-Ortega, D., Kolm, N., Immler, S., Maklakov, A. A., & Gonzalez‐Voyer, A. (2020). Long life evolves in large brained bird lineages. Evolution. https://doi.org/10.1111/evo.14087

  • Jin, L., Zhao, L., Liu, W. C., Zeng, Y., & Liao, W. B. (2015). Evidence for the expensive-tissue hypothesis in the Omei Wood Frog (Rana omeimontis). The Herpetological Journal, 25(2), 127–130

    Google Scholar 

  • Kotrschal, A., Corral-Lopez, A., & Kolm, N. (2019). Large brains, short life: selection on brain size impacts intrinsic lifespan. Biology Letters, 15, 20190137

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I. … Kolm, N. (2013a). Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Current Biology, 23(2), 168–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I. … Kolm, N. (2013b). The benefit of evolving a larger brain: big-brained guppies perform better in a cognitive task. Animal Behaviour, 86, e4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkwood, T. B. L. (1992). The disposable soma theory: evidence and implications. Netherlands Journal of Zoology, 43, 359–363

    Article  Google Scholar 

  • Krilowicz, B. L., Glotzbach, S. F., & Heller, H. C. (1988). Neuronal activity during sleep and complete bouts of hibernation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 255(6), R1008–R1019

    Article  CAS  Google Scholar 

  • Krilowicz, B. L., Edgar, D. M., & Heller, H. C. (1989). Action potential duration increases as body temperature decreases during hibernation. Brain research, 498(1), 73–80

    Article  CAS  PubMed  Google Scholar 

  • Lázaro, J., Hertel, M., Sherwood, C. C., Muturi, M., & Dechmann, D. K. (2018). Profound seasonal changes in brain size and architecture in the common shrew. Brain Structure and Function, 223(6), 2823–2840

    Article  PubMed  Google Scholar 

  • Leal, M., & Powell, B. J. (2012). Behavioural flexibility and problem-solving in a tropical lizard. Biology letters, 8(1), 28–30

    Article  PubMed  Google Scholar 

  • Lefebvre, L., Whittle, P., Lascaris, E., & Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Animal Behaviour, 53, 549–560

    Article  Google Scholar 

  • Liao, W. B., Lou, S. L., Zeng, Y., & Kotrschal, A. (2016). Large brains, small guts: the expensive tissue hypothesis supported within anurans. The American Naturalist, 188, 693–700

    Article  PubMed  Google Scholar 

  • Mai, C. L., & Liao, W. B. (2019). Brain size evolution in anurans: a review. Animal Biology, 69(3), 265–279

    Article  Google Scholar 

  • Magalhães, J. P. D., Costa, J., & Church, G. M. (2007). An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 62, 149–160

    Article  PubMed  Google Scholar 

  • Matějů, J., Kratochvíl, L., Pavelková, Z., Pavelková Řičánková, V., Vohralík, V., & Němec, P. (2016). Absolute, not relative brain size correlates with sociality in ground squirrels. Proceedings of the Royal Society B: Biological Sciences, 283(1827), 20152725

  • Meiri, S. (2018). Traits of lizards of the world: Variation around a successful evolutionary design. Global Ecology and Biogeography, 27, 1168–1172

    Article  Google Scholar 

  • Meiri, S. (2019). Endothermy, offspring size and evolution of parental provisioning in vertebrates. Biological Journal of the Linnean Society, 128, 1052–1056

    Google Scholar 

  • Meiri, S., Avila, L., Bauer, A. M., Chapple, D. G., Das, I., Doan, T. M. … Morando, M. (2020). The global diversity and distribution of lizard clutch sizes. Global Ecology and Biogeography, 29(9), 1515–1530

    Article  Google Scholar 

  • Minias, P., & Podlaszczuk, P. (2017). Longevity is associated with relative brain size in birds. Ecology and Evolution, 7, 3558–3566

    Article  PubMed  PubMed Central  Google Scholar 

  • Mink, J. W., Blumenschine, R. J., & Adams, D. B. (1981). Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 241, R203–R212

    Article  CAS  Google Scholar 

  • Montgomery, S. H., Mundy, N. I., & Barton, R. A. (2016). Brain evolution and development: adaptation, allometry and constraint. Proceedings of the Royal Society B: Biological Sciences, 283(1838), 20160433

  • Nealen, P. M., & Ricklefs, R. E. (2001). Early diversification of the avian brain: body relationship. Journal of Zoology, 253, 391–404

    Article  Google Scholar 

  • Northcutt, R. G. (2013). Variation in reptilian brains and cognition. Brain, behavior and evolution, 82(1), 45–54

    Article  PubMed  Google Scholar 

  • O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41, 673–690

    Article  Google Scholar 

  • O’connor, D., & Shine, R. (2003). Lizards in ‘nuclear families’: a novel reptilian social system in Egernia saxatilis (Scincidae). Molecular Ecology, 12(3), 743–752

    Article  PubMed  Google Scholar 

  • Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C., & Costa, G. C. (2017). AmphiBIO, a global database for amphibian ecological traits. Scientific data, 4, 170123

    Article  PubMed  PubMed Central  Google Scholar 

  • Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., & Isaac, N. (2013). The caper package: comparative analysis of phylogenetics and evolution in R. R package version, 5, 1–36

  • Pincheira-Donoso, D., Harvey, L. P., Cotter, S. C., Stark, G., Meiri, S., & Hodgson, D. J. (2021). The global macroecology of brood size in amphibians reveals a predisposition of low‐fecundity species to extinction. Global Ecology and Biogeography, 30(6), 1299–1310

    Article  Google Scholar 

  • Platel, R. O. L. A. N. D. (1979). Brain weight-body weight relationships. Biology of the Reptilia, 9, 147–171

    Google Scholar 

  • Reagan, D. P. (1992). Congeneric species distribution and abundance in a three-dimensional habitat: the rain forest anoles of Puerto Rico. Copeia, 2, 392–403

    Article  Google Scholar 

  • Ricklefs, R. E. (2010). Life-history connections to rates of aging in terrestrial vertebrates. Proceedings of the National Academy of Sciences, 107(22), 10314–10319

  • Rogell, B., Dowling, D. K., & Husby, A. (2020). Controlling for body size leads to inferential biases in the biological sciences. Evolution Letters, 4(1), 73–82

    Article  PubMed  Google Scholar 

  • Sayol, F., Lefebvre, L., & Sol, D. (2016). Relative brain size and its relation with the associative pallium in birds. Brain, behavior and evolution, 87(2), 69–77

    Article  PubMed  Google Scholar 

  • Scharf, I., Feldman, A., Novosolov, M., Pincheira-Donoso, D., Das, I., Böhm, M. … Meiri, S. (2015). Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Global Ecology and Biogeography, 24, 396–405

    Article  Google Scholar 

  • Slavens, F. L., … K. Slavens (1993). Reptiles and amphibians in captivity: breeding-longevity and inventory. Seattle: Slave ware

    Google Scholar 

  • Sol, D., Székely, T., Liker, A., & Lefebvre, L. (2007). Big-brained birds survive better in nature. Proceedings of the Royal Society B, 274, 763–769

  • Sol, D., Bacher, S., Reader, S. M., & Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. The American Naturalist, 172(S1), S63–S71

    Article  PubMed  Google Scholar 

  • Sol, D. (2009). Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biology Letters, 5(1), 130–133

    Article  PubMed  Google Scholar 

  • Sol, D., Sayol, F., Ducatez, S., & Lefebvre, L. (2016). The life-history basis for behavioural innovations. Philosophical Transactions of the Royal Society B, 371, 20150187

    Article  Google Scholar 

  • Sonntag, M., & Arendt, T. (2019). Neuronal activity in the hibernating brain. Frontiers in Neuroanatomy, 13, 71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, G., & Meiri, S. (2018). Cold and dark captivity: drivers of amphibian longevity. Global Ecology and Biogeography, 27, 1384–1397

    Article  Google Scholar 

  • Stark, G., Tamar, K., Itescu, Y., Feldman, A., & Meiri, S. (2018). Cold and isolated ectotherms: drivers of reptilian longevity. Biological Journal of the Linnean Society, 125, 730–740

    Article  Google Scholar 

  • Stark, G., Schwarz, R., & Meiri, S. (2020a). Does nocturnal activity prolong gecko longevity? Israel Journal of Ecology and Evolution, 1(aop), 1–8

    Google Scholar 

  • Stark, G., Pincheira-Donoso, D., & Meiri, S. (2020b). No evidence for the ‘rate‐of‐living’ theory across the tetrapod tree of life. Global Ecology and Biogeography, 29, 857–884

    Article  Google Scholar 

  • Striedter, G. F. (2005). Principles of brain evolution. Sunderland, U.K: Sinauer Associates

    Google Scholar 

  • Thireau, M. (1975). L’allométrie pondérale encéphalo-somatique chez les Urodèles. II. Relations interspécifiques

  • Trochet, A., Moulherat, S., Calvez, O., Stevens, V. M., Clobert, J., & Schmeller, D. S. (2014). A database of life-history traits of European amphibians. Biodiversity Data Journal, 2, e4123

    Article  Google Scholar 

  • Tsuboi, M., Husby, A., Kotrschal, A., Hayward, A., Buechel, S. D., Zidar, J. … Kolm, N. (2015). Comparative support for the expensive tissue hypothesis: big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids. Evolution, 69, 190–200

    Article  PubMed  Google Scholar 

  • Tsuboi, M., van der Bijl, W., Kopperud, B. T., Erritzøe, J., Voje, K. L., Kotrschal, A. … Kolm, N. (2018). Breakdown of brain–body allometry and the encephalization of birds and mammals. Nature Ecology & Evolution, 2, 1492–1500

    Article  Google Scholar 

  • Voituron, Y., et al. (2011). Extreme lifespan of the human fish (Proteus anguinus): A challenge for ageing mechanisms. Biology Letters, 7, 105–107

    Article  PubMed  Google Scholar 

  • Wells, K. D. (2007). The ecology and behavior of amphibians. Illinois: University of Chicago Press

    Book  Google Scholar 

  • Wilkinson, G. S., & Adams, D. M. (2019). Recurrent evolution of extreme longevity in bats. Biology Letters, 15, 20180860

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson, A., & Huber, L. (2012). Cold-blooded cognition: reptilian cognitive abilities. The Oxford handbook of comparative evolutionary psychology (pp. 129–141). Oxford: Oxford University Press

    Chapter  Google Scholar 

  • Yu, X., Zhong, M. J., Li, D. Y., Jin, L., Liao, W. B., & Kotrschal, A. (2018). Large-brained frogs mature later and live longer. Evolution, 72, 1174–1183

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Rachel Schwarz Stark and Simon Jamison for constructive discussion. We are also enormously grateful to Naomi Paz for English editing on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GS and DPD conceived the idea, outlined the hypotheses to be addressed and collected the data; GS led the preparation of the manuscript, devise the hypotheses, and performed most of the statistical analysis. DPD contributed at all stages of manuscript preparation.

Corresponding authors

Correspondence to Gavin Stark or Daniel Pincheira-Donoso.

Ethics declarations

Competing Interests statement

There are no competing interests among all authors for this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stark, G., Pincheira-Donoso, D. The Evolution of Brain Size in Ectothermic Tetrapods: Large Brain Mass Trades-Off with Lifespan in Reptiles. Evol Biol 49, 180–188 (2022). https://doi.org/10.1007/s11692-022-09562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-022-09562-4

Keywords

Navigation