Skip to main content
Log in

Correlation between heterozygosity and subunit molecular weight

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

GENIC heterozygosity at enzyme loci has been examined for correlation with parameters as diverse as substrate specificity1, physiological function2 and quaternary structure3. However, none of these has provided an adequate explanation for allozymic variation in general. One report4 suggested a positive relationship for Drosophila enzymes between heterozygosity and subunit molecular weight (MW), which can be equated to the size of the structural gene element. Various models, both neutral and selective, would predict a correlation between gene size and variability5–7. Recently, a similar correlation has been found within three classes of vertebrates8,31, and between the number of rare alleles and subunit size in human populations9,10. We report here that we have tested the relationship between heterozygosity and subunit size in Drosophila species with a new selection of enzymes. Our results indicate that the correlation is indeed general. The relationship is quasi-linear and does not differ significantly from several models. The results support the hypothesis that there are constraints on the number of sites available to charge substitution within an enzyme molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gillespie, J. H. & Kojima, K. Proc. natn. Acad. Sci. U.S.A. 61, 582–585 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Johnson, G. B. Science 184, 28–37 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ward, R. D. Biochem. Genet. 15, 123–135 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Koehn, R. K. & Eanes, W. F. Theor. Population Biol. 11, 330–341 (1977).

    Article  CAS  Google Scholar 

  5. Kimura, M. & Crow, J. F. Genetics 49, 725–738 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gillespie, J. H. Evolution 31, 85–90 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Watterson, G. A. Genetics 85, 789–814 (1977).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nei, M., Fuerst, P. A. & Chakraborty, R. Proc. natn. Acad. Sci. U.S.A. 75, 3359–3362 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Eanes, W. F. & Koehn, R. K. Biochem. Genet. 16, 971–985 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Harris, H., Hopkinson, D. A. & Edwards, Y. H. Proc. natn. Acad. Sci. U.S.A. 74, 698–701 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Martin, R. G. & Ames, B. N. J. biol. Chem. 236, 1372–1379 (1961).

    CAS  PubMed  Google Scholar 

  12. Laurent, T. C. & Killander, J. J. Chromat. 14, 317–330 (1964).

    Article  CAS  Google Scholar 

  13. Andrews, P. Biochem. J. 96, 596–606 (1965).

    Article  Google Scholar 

  14. Lee, C. Y., Langley, C. H. & Burkhart, J. Analyt. Biochem. 86, 697–706 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Langley, C. H., Ito, K. & Voelker, R. A. Genetics 86, 447–454 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zouros, E. Evolution 27, 601–624 (1974).

    Google Scholar 

  17. Saura, A. Hereditas 76, 161–172 (1974).

    Article  CAS  PubMed  Google Scholar 

  18. Langley, C. H., Tobari, Y. N. & Kojima, K. Genetics 78, 921–936 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saura, A., Lakovaara, S., Lokki, J. & Lankinen, P. Hereditas 75, 33–46 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. Lakovaara, S. & Saura, A. Genetics 69, 377–384 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kojima, K., Smouse, P., Yang, S., Nair, P. S. & Brncic, D. Genetics 72, 721–731 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kojima, K., Gillespie, J. H. & Tobari, Y. N. Biochem. Genet. 4, 627–637 (1970).

    Article  CAS  PubMed  Google Scholar 

  23. Band, H. T. Genetics 80, 761–771 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ayala, F. J., Tracey, M. L., Barr, L. G., McDonald, J. F. & Perez-Salas, S. Genetics 77, 343–384 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson, F. M. Genetics 68, 77–95 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohta, T. & Kimura, M. Genet. Res. 22, 201–204 (1973).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  27. Fitch, W. M. & Markowitz, E. Biochem. Genet. 4, 579–593 (1970).

    Article  CAS  PubMed  Google Scholar 

  28. Fitch, W. M. Haemat. Bluttransfusion 10, 199–215 (1972).

    CAS  Google Scholar 

  29. Fitch, W. M. J. molec. Evolut. 2, 123–136 (1973).

    Article  ADS  CAS  Google Scholar 

  30. Wehrhahn, C. F. & Gulizia, C. Genetics (in the press).

  31. Ward, R. D. Biochem. Genet. 16, 799–810 (1978).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LEIGH BROWN, A., LANGLEY, C. Correlation between heterozygosity and subunit molecular weight. Nature 277, 649–651 (1979). https://doi.org/10.1038/277649a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/277649a0

  • Springer Nature Limited

This article is cited by

Navigation