Skip to main content
Log in

Mantle helium in hydrothermal plumes in the Galapagos Rift

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE 3He/4He ratio in deep Pacific water is 20–30% higher than in atmospheric helium because of injection of primordial helium from the mantle1,2. The largest 3He enrichments in the Pacific have been found in water on the crest of the East Pacific Rise where the isotopic ratios indicate2 that the excess helium component has a 3He/4He ratio about ten times the atmospheric ratio, in agreement with the ratios measured in trapped helium in the glassy rims of oceanic tholeiites3,4. Recent measurements in this laboratory5 have shown that the hot brines in the axial rift of the Red Sea are very highly enriched in mantle helium. 3He and 4He are respectively 3300 and 380 times supersaturated relative to atmospheric solubility equilibrium in seawater, with a 3He/4He ratio of 1.2×10−5, or 8.6 times the ratio in atmospheric helium. Comparison of the enrichments of various elements in the Red Sea brines and in brines associated with salt domes6 shows that helium is the only component in the Red Sea brines which unequivocally requires derivation from hydrothermal circulation of seawater in basalts. The helium isotopes are thus an extremely powerful and sensitive tracer for the detection and mapping of hydrothermal systems in oceanic spreading centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke, W. B., Beg, M. A. & Craig, H. Earth planet. Sci. Lett. 6, 213 (1969).

    Article  ADS  CAS  Google Scholar 

  2. Craig, H., Clarke, W. B. & Beg, M. A. Earth planet. Sci. Lett. 26, 125 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Lupton, J. E. & Craig, H. Earth planet. Sci. Lett. 26, 133 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Craig, H. & Lupton, J. E. Earth planet. Sci. Lett. 31, 369 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Lupton, J. E., Weiss, R. F. & Craig, H. Nature 266, 244 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Craig, H., Hot Brines and Recent Heavy Metal Deposits in the Red Sea, (eds Degens, E. T. and Ross, D. A.) 208–242 (Springer-Verlag, New York, 1969).

    Book  Google Scholar 

  7. Sclater, J. G. & Klitgord, K. D. J. geophys. Res. 78, 6951 (1973).

    Article  ADS  Google Scholar 

  8. Williams, D. L., Von Herzen, R. P., Sclater, J. G. & Anderson, R. N. Geophys. J. R. Astr. Soc. 38, 587 (1974).

    Article  ADS  Google Scholar 

  9. Weiss, R. F. et al., Trans. Am. Geophys. Union 57, 935 (1976).

    Google Scholar 

  10. Weiss, R. F. et al. Nature 267, 600–603 (1977).

    Article  ADS  Google Scholar 

  11. Chung, Y-C & Craig, H. Earth planet. Sci. Lett. 14, 55 (1972).

    Article  ADS  CAS  Google Scholar 

  12. Craig, H. & Weiss, R. F. Earth planet. Sci. Lett. 10, 289 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Ross, D. A. Science 175, 1455 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Dymond, J. & Hogan, L. Earth planet. Sci. Lett. 20, 131 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LUPTON, J., WEISS, R. & CRAIG, H. Mantle helium in hydrothermal plumes in the Galapagos Rift. Nature 267, 603–604 (1977). https://doi.org/10.1038/267603a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267603a0

  • Springer Nature Limited

This article is cited by

Navigation