Skip to main content
Log in

Complete quantum teleportation using nuclear magnetic resonance

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Quantum-mechanical systems have information processing capabilities1,2 that are not possible with classical devices. One example is quantum teleportation3, in which the quantum state of a system is transported from one location to another without moving through the intervening space. But although partial implementations4,5 of quantum teleportation over macroscopic distances have been achieved using optical systems, the final stage of the teleportation procedure — which allows the complete recovery of the original state — was omitted. Here we report an experimental implementation of full quantum teleportation over interatomic distances using liquid-state nuclear magnetic resonance. We achieve teleportation of the quantum state of a carbon nucleus to a hydrogen nucleus in molecules of trichloroethylene, by exploiting natural phase decoherence of the carbon nuclei. Such a teleportation scheme may be used as a subroutine in larger quantum computations, or for quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Schematic circuits for the quantum teleportation experiment (a) and the control experiment (b).
Figure 2: Entanglement fidelity (a measure of how well quantum information is preserved) plotted as a function of decoherence delay.

Similar content being viewed by others

References

  1. Bennett, C. H. Quantum information and computation. Phys. Today 48, 24–30 (1995).

    Article  Google Scholar 

  2. Preskill, J. Quantum computing: pro and con. Proc. R. Soc. Lond. A 454, 469–486 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Bennett, C. H.et al. Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Bouwmeester, D.et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolski-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Sakurai, J. J. Modern Quantum Mechanics(Addison-Wesley, Reading, MA, (1995)).

    Google Scholar 

  7. Bennett, C. H., DiVencenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR spectroscopy. Proc. Natl Acad. Sci. USA 94, 1634–1639 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Ernst, R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions(Oxford Univ. Press, (1990)).

    Google Scholar 

  11. Grant, D. M. & Harris, R. K. (eds) Encyclopedia of Nuclear Magnetic Resonance(Wiley, New York, (1996)).

    Google Scholar 

  12. Gershenfeld, N. & Chuang, I. L. Bulk spin resonance quantum computation. Science 275, 350–356 (1997).

    Article  MathSciNet  CAS  Google Scholar 

  13. Cory, D. G., Price, M. D. & Havel, T. F. Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing. Physica D 120, 82–101 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Laflamme, R., Knill, E., Zurek, W. H., Catasti, P. & Mariappan, S. V. S. NMR Greenberger-Horne-Zeilinger states. Phil. Trans. R. Soc. Lond. A 356, 1941–1947 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Cory, D. G.et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental implementation of fast quantum searching. Phys. Rev. Lett. 18, 3408–3411 (1998).

    Article  ADS  Google Scholar 

  17. Jones, J. A. & Mosca, M. Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer. J. Chem. Phys. 109, 1648–1653 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Chuang, I. L., Vandersypen, L. M. K., Zhou, X. L., Leung, D. W. & Lloyd, S. Experimental realization of a quantum algorithm. Nature 393, 143–146 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Jones, J. A., Mosca, M. & Hansen, R. H. Implementation of a quantum search algorithm on a nuclear magnetic resonance quantum computer. Nature 393, 344–346 (1998).

    Article  ADS  Google Scholar 

  20. Brassard, G., Braunstein, S. & Cleve, R. Teleportation as a quantum computation. Physica D 120, 43–47 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  21. Zurek, W. H. Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991).

    Article  Google Scholar 

  22. Schumacher, B. W. Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614–2628 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Barnum, H., Nielsen, M. A. & Schumacher, B. W. Information transmission through a noisy quantum channel. Phys. Res. A 57, 4153–4175 (1998).

    ADS  CAS  Google Scholar 

  24. Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997).

    Article  ADS  Google Scholar 

  26. Nielsen, M. A. & Caves, C. M. Reversible quantum operations and their application to teleportation. Phys. Rev. A 55, 2547–2556 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Furusawa, A.et al. Unconditional quantum teleportation. Science(in the press).

Download references

Acknowledgements

We thank D. Cory, C. Jarzynski, J. Ye and W. Zurek for discussions, the Stable Isotope Laboratory at Los Alamos for use of their facility, and the National Security Agency and Office of Naval Research for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, M., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998). https://doi.org/10.1038/23891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23891

  • Springer Nature Limited

This article is cited by

Navigation