Skip to main content

Quantum Information Processing Experiments Using Nuclear and Electron Spins in Molecules

  • Chapter
Principles and Methods of Quantum Information Technologies

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

  • 4963 Accesses

Abstract

Nuclear spins and electron spins in molecules have relatively long decoherence times, offer appropriate interactions for use in quantum gate operations, and can be controlled using magnetic resonance techniques. In this chapter, from the viewpoint of using these spins for quantum information processing, Hamiltonian engineering methods and hardware are developed for hyper precision control. Additionally, hyperpolarization techniques are developed for spin initialization, and a spin amplification method is developed for detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.A. Gershenfeld, I.L. Chuang, Science 275, 350 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. U. S. A. 94, 1634, (1997)

    Article  ADS  Google Scholar 

  3. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Nature 414, 883 (2001)

    Article  ADS  Google Scholar 

  4. C. Negrevergne, T.S. Mahesh, C.A. Ryan, M. Ditty, F. Cyr-Racine, W. Power, N. Boulant, T. Havel, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 96, 170501 (2006)

    Article  ADS  Google Scholar 

  5. C.P. Slichter, Principles of Magnetic Resonance, Third Enlarged and Updated Edition (Springer, Berlin, 1990)

    Book  Google Scholar 

  6. T.D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. B 71, 014401 (2005)

    Article  ADS  Google Scholar 

  7. M. Mehring, J. Mende, W. Scherer, Phys. Rev. Lett. 90, 153001 (2003)

    Article  ADS  Google Scholar 

  8. K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Höfer, T. Takui, J. Mater. Chem. 19, 3739 (2009)

    Article  Google Scholar 

  9. J.J.L. Morton, A.M. Tyryshkin, A. Ardavan, K. Porfyrakis, S.A. Lyon, G.A.D. Briggs, J. Chem. Phys. 124, 014508 (2006)

    Article  ADS  Google Scholar 

  10. S. Lloyd, Science 261, 1569 (1993)

    Article  ADS  Google Scholar 

  11. Y. Morita, Y. Yakiyama, S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, K. Sato, M. Kitagawa, K. Nakasuji, T. Takui, J. Am. Chem. Soc. 132, 6944 (2010)

    Article  Google Scholar 

  12. N.C. Jones, R. Van Meter, A.G. Fowler, P.L. McMahon, J. Kim, T.D. Ladd, Y. Yamamoto, Phys. Rev. X 2, 031007 (2012)

    Google Scholar 

  13. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. R. Rahimi, K. Takeda, M. Ozawa, M. Kitagawa, J. Phys. A 39, 2151 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Y. Tabuchi, M. Kitagawa, arXiv:1208.5218

    Google Scholar 

  16. Y. Tabuchi, On the control of electron spin qubits, PhD thesis (Japanese), Osaka University, 2012

    Google Scholar 

  17. Y. Hashimoto, Y. Tabuchi, T. Kishida, I. Yamashina, M. Kitagawa, Toward quantum computation with electron spin multiple resonance, in International Symposium on Physics of Quantum Technology (Nara, Japan, 2008)

    Google Scholar 

  18. Y.S. Yap, H. Yamamoto, Y. Tabuchi, M. Negoro, A. Kagawa, M. Kitagawa, J. Magn. Reson. 232, 62 (2013)

    Article  ADS  Google Scholar 

  19. Y.S. Yap, Precise control and initialization of electron spin qubits, PhD thesis, Osaka University, 2013

    Google Scholar 

  20. K. Takeda, Y. Tabuchi, M. Negoro, M. Kitagawa, J. Magn. Reson. 197, 242 (2009)

    Article  ADS  Google Scholar 

  21. Y. Tabuchi, M. Negoro, K. Takeda, M. Kitagawa, J. Magn. Reson. 204, 327 (2010)

    Article  ADS  Google Scholar 

  22. K. Tateishi, Room temperature nuclear hyperpolarization and hypersensitive NMR spectroscopy of molecules doped in glass using photo-excited triplet electrons, PhD thesis (Japanese), Osaka University, 2013

    Google Scholar 

  23. M. Negoro, K. Tateishi, A. Kagawa, M. Kitagawa, Phys. Rev. Lett. 107, 050503 (2011)

    Article  ADS  Google Scholar 

  24. L.M.K. Vandersypen, I.L. Chuang, Rev. Mod. Phys. 76, 1037 (2004)

    Article  ADS  Google Scholar 

  25. M.H. Levitt, R. Freeman, J. Magn. Reson. 33, 473 (1979)

    ADS  Google Scholar 

  26. H. Geen, R. Freeman, J. Magn. Reson. 93, 93 (1991)

    ADS  Google Scholar 

  27. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, S.J. Glaser, J. Magn. Reson. 172, 296 (2005)

    Article  ADS  Google Scholar 

  28. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958)

    Article  ADS  Google Scholar 

  29. G.S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)

    Article  ADS  Google Scholar 

  30. T. Gullion, D.B. Baker, M.S. Conradi, J. Magn. Reson. 89, 479 (1990)

    ADS  Google Scholar 

  31. A.W. Overhauser, Phys. Rev. 92, 411 (1953)

    Article  ADS  MATH  Google Scholar 

  32. A. Abragam, M. Goldman, Nuclear Magnetism: Order and Disorder (Clarendon Press, Oxford University Press, Oxford, New York, 1982)

    Google Scholar 

  33. T. Maly, G.T. Debelouchina, V.S. Bajaj, K.-N. Hu, C.-G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C.A. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211 (2008)

    Article  ADS  Google Scholar 

  34. K. Golman, J.H. Ardenaer-Larsen, J.S. Petersson, S. Mansson, I. Leunbach, Proc. Natl. Acad. Sci. U. S. A. 100, 10435 (2003)

    Article  ADS  Google Scholar 

  35. D.G. Crabb, W. Meyer, Annu. Rev. Nucl. Part. Sci. 47, 67 (1997)

    Article  ADS  Google Scholar 

  36. A. Obertelli, T. Uesaka, Eur. Phys. J. A 47, 1 (2011)

    Article  Google Scholar 

  37. W. de Boer, T.O. Niinikoski, Nucl. Instr. Methods 114, 495 (1974)

    Article  Google Scholar 

  38. A. Kagawa, Y. Murokawa, K. Takeda, M. Kitagawa, J. Magn. Reson. 197, 9 (2009)

    Article  ADS  Google Scholar 

  39. A. Kagawa, M. Negoro, K. Takeda, M. Kitagawa, Rev. Sci. Instrum. 80, 044705 (2009)

    Article  ADS  Google Scholar 

  40. M. Negoro, K. Nakayama, K. Tateishi, A. Kagawa, K. Takeda, M. Kitagawa, J. Chem. Phys. 133, 154504 (2010)

    Article  ADS  Google Scholar 

  41. K. Tateishi, M. Negoro, A. Kagawa, T. Uesaka, M. Kitagawa, J. Phys. Soc. Jpn. 82, 084005 (2013)

    Article  ADS  Google Scholar 

  42. K. Tateishi, M. Negoro, A. Kagawa, M. Kitagawa, Angew. Chem. Int. Ed. 125, 13549 (2014)

    Article  Google Scholar 

  43. A. Henstra, T.-S. Lin, J. Schmidt, W.T. Wenckebach, Chem. Phys. Lett. 165, 6 (1990)

    Article  ADS  Google Scholar 

  44. K. Takeda, Triplet State Dynamic Nuclear Polarization (VDM Verlag, Saarbrücken, 2009)

    Google Scholar 

  45. M. Iinuma, Y. Takahashi, I. Shake, M. Oda, A. Masaike, T. Yabuzaki, H.M. Shimizu, J. Magn. Reson. 175, 235 (2005)

    Article  ADS  Google Scholar 

  46. K. Tateishi, M. Negoro, S. Nishida, A. Kagawa, Y. Morita, M. Kitagawa, Room-temperature hyperpolarization of nuclear spins in bulk. Proc. Natl. Acad. Sci. U. S. A. 111, 7527 (2014)

    Article  ADS  Google Scholar 

  47. W.K. Wooters, W.H. Zurek, Nature (London) 299, 802 (1982)

    Article  ADS  Google Scholar 

  48. D.P. DiVincenzo, Fortschr. Phys. 48, 771 (2000)

    Article  MATH  Google Scholar 

  49. N. Bloembergen, Physica 15, 386 (1949)

    Article  ADS  Google Scholar 

  50. G. Roumpos, C.P. Master, Y. Yamamoto, Phys. Rev. B 75, 094415 (2007)

    Article  ADS  Google Scholar 

  51. J. Zhang, M.-H. Yung, R. Laflamme, A. Aspuru-Guzik, J. Baugh, Nat. Commun. 3, 880 (2012)

    Article  ADS  Google Scholar 

  52. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)

    Google Scholar 

  53. K. Fujii, M. Negoro, N. Imoto, M. Kitagawa, Phys. Rev. X 4, 041039 (2014)

    Google Scholar 

Download references

Acknowledgements

The studies in Sects. 27.2.2 and 27.2.4 were mainly performed by Dr. Yutaka Tabuchi. The study in Sect. 27.2.3 was mainly performed by Dr. Yung Szen Yap. The studies in Sects. 27.3.2 and 27.4 were collaborative work performed by Dr. Kenichiro Tateishi and Dr. Shinsuke Nishida. The authors thank Dr. Kazuyuki Takeda for fruitful discussions on DNP. The research described in this paper was supported by a MEXT Grant-in-Aid for Scientific Research on Innovative Areas (no. 21102004), Young Scientist Research B grant nos. 24740273 and 25800230, and the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST). M.N. and K.T. were also supported by the Global-COE Program of Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Kagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kitagawa, M., Morita, Y., Kagawa, A., Negoro, M. (2016). Quantum Information Processing Experiments Using Nuclear and Electron Spins in Molecules. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_27

Download citation

Publish with us

Policies and ethics