Skip to main content
Log in

Movements in the Myelin Schwann Sheath of the Vertebrate Axon

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE demonstration in our laboratory that radioactive amino-acid and uridine label the myelin lamellae of vertebrate peripheral nerve and penetrate into the axon1–3 raised the problem of the route and mechanism of transport of these materials through the layered sheath4. Two mechanisms seemed salient: direct transfer through the battery of stacked myelin membranes, governed by the forces involved in transport across membranes; and transport within the Schwann cytoplasm into the depths of the myelin via the Schmidt–Lanterman clefts, perhaps propelled by movements of the Schwann cell body. These speculations, particularly the second one, led us to examine the myelin sheaths of living nerve fibres with lapsed-time microcinematography. We report our findings on movements in the myelin sheath, with particular reference to the clefts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer, M., and Salpeter, M. M., Nature, 210, 1225 (1966).

    Article  ADS  CAS  Google Scholar 

  2. Singer, M., and Salpeter, M. M., J. Morphol., 120, 281 (1966).

    Article  CAS  Google Scholar 

  3. Singer, M., and Green, M. R., J. Morphol., 124, 321 (1968).

    Article  CAS  Google Scholar 

  4. Singer, M., Ciba Found. Symp. on Growth of Nervous System (edit. by Wolstenholme, G. E. W., and O'Connor, M.), 200 (Churchill, London, 1968).

    Google Scholar 

  5. Sotnikov, O. S., Arkh. Anat. Gistol. Embriol., 43, 31 (1965).

    Google Scholar 

  6. Boll, F., Atti. R. Accad. Naz. Lincei (Rome) (1877).

  7. Ettisch, G., and Jochims, I., Arch. Ges. Physiol., 215, 519 (1927).

    Article  CAS  Google Scholar 

  8. Ettisch, G., and Jochims, I., Arch. Ges. Physiol., 215, 675 (1927).

    Article  CAS  Google Scholar 

  9. Singer, M., Rzehak, K., and Maier, C. S., J. Exp. Zool., 166, 89 (1967).

    Article  CAS  Google Scholar 

  10. Weiss, P., Bull. Neurosci. Res. Prog. (1967).

  11. Robertson, J. D., J. Biophys. Biochem. Cytol., 4, 39 (1958).

    Article  CAS  Google Scholar 

  12. Pomerat, C. M., Hendelman, W. J., Raiborn, C. W., and Massey, J. F., in The Neuron (edit. by Hydén, H.), 119 (Elsevier, Amsterdam, 1967).

    Google Scholar 

  13. Ernyei, S., and Young, M. R., J. Physiol., 183, 469 (1966).

    Article  CAS  Google Scholar 

  14. Robertson, J. D., in Ultrastructure and Metabolism of the Nervous System (edit. by Korey, S. R., Pope, A., and Robins, E.), 94 (Williams and Wilkins, Baltimore, 1962).

    Google Scholar 

  15. Murray, M., and Herrmann, A., J. Cell. Biol., 39, 149a (abstract) (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SINGER, M., BRYANT, S. Movements in the Myelin Schwann Sheath of the Vertebrate Axon. Nature 221, 1148–1150 (1969). https://doi.org/10.1038/2211148a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2211148a0

  • Springer Nature Limited

This article is cited by

Navigation