Skip to main content

Advertisement

Log in

Action of Atomic Hydrogen on Ferri-Cytochrome c in Aqueous Solution

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ATOMIC hydrogen is one of the simplest chemical reagents. Its structure can be described in exact theoretical terms. In aqueous solution it interacts only relatively weakly with the solvent. It is neutral and thus not influenced by ionic effects in its reaction with specific substrates. Therefore its reactions are of interest from the point of view of fundamental chemical kinetics in aqueous solutions. Recently, a method has been established for the investigation of the quantitative aspects of the reactivity of atomic hydrogen with various substrates dissolved in aqueous solutions1. Using a high-frequency electrode-less discharge to dissociate pure hydrogen gas into hydrogen-atoms and passing these under carefully controlled conditions into aqueous solution, it was shown that the reactive species is identical in its reactions with hydrogen-atoms produced by ionizing radiations or by ultra-violet light2. Therefore these reactions serve to elucidate also, independently, some aspects of the mechanism of the action of ionizing radiations or ultra-violet light on such systems. In this method, however, hydrogen atoms are the only reactive species present so that their specific action may be examined separately. The reactions of simple substrates (inorganic ions1,2; their inorganic complexes3; simple organic solutes4) were used to establish details of the reactivity of hydrogen atoms. The work was extended to enzymes (chymotrypsin5a, trypsin5b, ribonuclease5c) to elucidate the action on biologically interesting substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. a Czapski, G., and Stein, G., Nature, 182, 598 (1958); J. Phys. Chem., 63, 850 (1959); b, ibid., 64, 219 (1960); c, Israel J. Chem., 2, 15 (1964).

    Article  ADS  CAS  Google Scholar 

  2. a, Czapski, G., Jortner, J., and Stein, G., J. Phys. Chem., 65, 956, 960 (1961). b, Navon, G., and Stein, G., ibid., 69, 1384 (1965).

    Article  CAS  Google Scholar 

  3. a, Navon, G., and Stein, G., J. Phys. Chem., 69, 1390 (1965); b, (to be published). Navon, G., Ph.D. thesis, Jerusalem (1965).

    Article  CAS  Google Scholar 

  4. a, Czapski, G., Rabani, J., and Stein, G., Trans. Faraday Soc., 58, 2160 (1962). b, Navon, G., and Stein, G., Israel J. Chem., 2, 151 (1964).

    Article  CAS  Google Scholar 

  5. a, Mee, L. K., Navon, G., and Stein, G., Nature, 204, 1056 (1964); b, Biochim. Biophys. Acta, 104, 151 (1965). c, Holmes, B. F., Navon, G., and Stein, G. (to be published).

    Article  ADS  CAS  Google Scholar 

  6. Margoliash, E., Biochem. J., 56, 529, 535 (1954); Biochem. Preparations, 5, 33 (J. Wiley and Sons, Inc., N.Y., 1957).

    Google Scholar 

  7. Rabani, J., and Stein, G., Rad. Res., 17, 327 (1962).

    Article  CAS  Google Scholar 

  8. Gordon, S., Hart, E. J., Matheson, M. S., Rabani, J., and Thomas, J. K., Disc. Faraday Soc., 36, 193 (1963). Matheson, M. S., Rad. Res., Supp., 4, 1 (1964).

    Article  Google Scholar 

  9. Sutin, N., Nature, 190, 438 (1961). Sutin, N., and Christman, D. R., J. Amer. Chem. Soc., 83, 1773 (1961).

    Article  ADS  CAS  Google Scholar 

  10. Margoliash, E., in Enzyme Models and Enzyme Structure, Brookhaven Symp. Biol., 15, 266 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CZAPSKI, G., FROHWIRTH, N. & STEIN, G. Action of Atomic Hydrogen on Ferri-Cytochrome c in Aqueous Solution. Nature 207, 1191–1192 (1965). https://doi.org/10.1038/2071191a0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2071191a0

  • Springer Nature Limited

This article is cited by

Navigation