Skip to main content
Log in

Green processing using ionic liquids and CO2

  • Scientific Correspondence
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Many organic solvents evaporate into the atmosphere with detrimental effects on the environment and human health. But room-temperature ionic liquids, with low viscosity and no measurable vapour pressure1, can be used as environmentally benign media for a range of industrially important chemical processes2,3,4,5,6, despite uncertainties about thermal stability and sensitivity to oxygen and water. It is difficult to recover products, however, as extraction with water7 works only for hydrophilic products, distillation is not suitable for poorly volatile or thermally labile products, and liquid-liquid extraction using organic solvents results in cross-contamination. We find that non-volatile organic compounds can be extracted from ionic liquids using supercritical carbon dioxide, which is widely used to extract large organic compounds with minimal pollution8. Carbon dioxide dissolves in the liquid to facilitate extraction, but the ionic liquid does not dissolve in carbon dioxide, so pure product can be recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Phase diagram for the CO2-[BMIM][PF6] system.
Figure 2: Extraction of naphthalene from the naphthalene/[BMIM][PF6] mixture using CO2at 40 °C and 13.8 MPa.

References

  1. Seddon, K. R. J. Chem. Tech. Biotechnol. 68, 351–356 (1997).

    Google Scholar 

  2. Chauvin, Y. & Olivier-Bourrbigou, H. Chemtech 25, 26–30 (1995).

    Google Scholar 

  3. Adams, C. J., Earle, M. J., Roberts, G. & Seddon, K. R. Chem. Commun. 19, 2097–2098 (1998).

    Google Scholar 

  4. Earle, M. J., McCormac, P. B. & Seddon, K. R. Chem. Commun. 20, 2245–2246 (1998).

    Google Scholar 

  5. Earle, M. J., McCormac, P. B. & Seddon, K. R. Green Chem. 1, 23–25 (1999).

    Google Scholar 

  6. Ellis, B., Keim, W. & Wasserscheidd, P. J. Chem. Commun. 4, 337–338 (1999).

    Google Scholar 

  7. Huddleston, J. G. et al. Chem. Commun. 16, 1765–1766 (1998).

    Google Scholar 

  8. Brennecke, J. F. Chem. Ind. 21, 831–834 (1996).

    Google Scholar 

  9. Moerkerke, R. et al. Macromolecules 31, 2223–2229 (1998).

    Google Scholar 

  10. Sako, S., Ohgaki, K. & Katayama, T. J. Supercrit. Fluids 1, 1–6 (1988).

    Google Scholar 

  11. Huie, N. C., Luks, K. D. & Kohn, J. P. J. Chem. Eng. Data 18, 311–313 (1973).

    Google Scholar 

  12. Angus, S., Armstrong, B. & de Reuck, K. M. (eds) International Thermodynamic Tables of the Fluid State: Carbon Dioxide (Pergamon, Oxford, 1976).

  13. Super, M. & Beckman, E. J. J. Chem. Eng. Data 42, 664–670 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, L., Hancu, D., Beckman, E. et al. Green processing using ionic liquids and CO2. Nature 399, 28–29 (1999). https://doi.org/10.1038/19887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/19887

  • Springer Nature Limited

This article is cited by

Navigation