Skip to main content
Log in

Growth of nanotubes for probe microscopy tips

  • Scientific Correspondence
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Carbon nanotubes, which have intrinsically small diameters and high aspect ratios and which buckle reversibly, make potentially ideal structures for use as tips in scanning probe microscopies, such as atomic force microscopy (AFM)1,2,3,4. However, the present method of mechanically attaching nanotube bundles for tip fabrication is time consuming and selects against the smallest nanotubes, limiting the quality of tips. We have developed a technique for growing individual carbon nanotube probe tips directly, with control over the orientation, by chemical vapour deposition (CVD) from the ends of silicon tips. Tips grown in this way may become widely used in high-resolution probe microscopy imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Characterization of CVD nanotube tips.
Figure 2: Imaging IgM macromolecules with a CVD nanotube tip at high resolution.

References

  1. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T. & Smalley, R. E. Nature 384, 147–150 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Wong, S. S., Harper, J. D., Lansbury, P. T. & Lieber, C. M. J. Am. Chem. Soc. 120, 603–604 (1998).

    Google Scholar 

  3. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. & Lieber, C. M. Nature 394, 52–55 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Wong, S. S. et al. Appl. Phys. Lett. 73, 3465–3467 (1998).

    Google Scholar 

  5. Lehmann, V. Thin Solid Films 255, 1–4 (1995).

    Google Scholar 

  6. Ronkel, F., Schultze, J. W. & Arens-Fischeer, R. Thin Solid Films 276, 40–43 (1996).

    Google Scholar 

  7. Li, W. Z. et al. Science 274, 1701–1703 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Vesenka, J., Manne, S., Giberson, R., Marsh, T. & Henderson, E. Biophys. J. 65, 992–997 (1993).

    Google Scholar 

  9. Perkins, S. J., Nealis, A. S., Sutton, B. J. & Feinstein, A. J. Mol. Biol. 221, 1345–1366 (1991).

    Google Scholar 

  10. Shao, Z., Mou, J., Czajkowsky, D. M., Yang, J. & Yuan, J.-Y. Adv. Phys. 45, 1–86 (1996).

    Google Scholar 

  11. Muller, D., Amrein, M. & Engel, A. J. Struct. Biol. 119, 172–188 (1997).

    Google Scholar 

  12. Fritz, J., Anselmetti, D., Jarchow, J. & Fernandez-Buusquets, X. J. Struct. Biol. 119, 165–171 (1997).

    Google Scholar 

  13. Zhang, Y., Sheng, S. & Shao, Z. Biophys. J. 71, 2168–2176 (1996).

    Google Scholar 

  14. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. Nature 395, 878–881 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Hafner, J. H. et al. Chem. Phys. Lett. 296, 195–202 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafner, J., Cheung, C. & Lieber, C. Growth of nanotubes for probe microscopy tips. Nature 398, 761–762 (1999). https://doi.org/10.1038/19658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/19658

  • Springer Nature Limited

This article is cited by

Navigation