Skip to main content
Log in

Illuminant-Dependence of Von Kries Type Quotients

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A von Kries quotient is defined as the cone signal of a reflectance under some illuminant divided by the same cone signal of the illuminant. A von Kries type quotient is a similar ratio, the cone sensitivity being replaced with some linear combination of the F color matching functions P(λ). We study the illuminant-(in)dependent behavior of von Kries type quotients by means of an expansion consisting of one illuminant-independent term and a series of illuminant-dependent ones. It is proved that the series rapidly decreases and that the dominating first term is small if P(λ) is a narrow function of wavelength and the reflectance and spectral distribution functions are sufficiently broad-band, defined in the text. Von Kries type quotients have a favorable illuminant-independent behavior if and only if the reflectance and spectral distribution functions are smooth functions of wavelength with chromaticity coordinates in a restricted neighborhood of the achromatic point belonging to the equal-energy spectrum, dependent on the narrowness of P(λ), comprising the object color solid only if P(λ) were a delta-function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. 1968. Handbook of Mathematical Functions.National Bureau of Standards, Washington.

  • Bäuml, K.-H. 1999. Color constancy: The role of image surfaces in illuminant adjustment. Journal of the Optical Soc. of Am. A, 16:1521-1529.

    Google Scholar 

  • Bäuml, K.-H. 1995. Illuminant changes under different surface collections: Examining some principles of colour appearance. Journal of the Optical Soc. of Am. A, 12:261-271.

    Google Scholar 

  • Brainard, D.H. and Wandell, B.A. 1992. Asymmetric color matching: How appearance depends on the illuminant. Journal of the Optical Soc. of Am. A, 9:1433-1448.

    Google Scholar 

  • Brainard, D.H., Brunt, W.A., and Speigle, J.M. 1997. Color constancy in the nearly natural image. I. Asymetric matches. Journal of the Optical Soc. of Am. A, 14:2091-2110.

    Google Scholar 

  • Breene, R.G. 1961. The Shift and Shape of Spectral Lines.Pergamon Press: Oxford.

    Google Scholar 

  • Brill, M. H. and West, G. 1986. Chromatic adaptation and color constancy: A possible dichotomy. Color Research and Application, 11:196-204.

    Google Scholar 

  • Chichilnisky, E.J. and Wandell, B.A. 1995. Photoreceptor sensitivity changes explain color appearance shift induced by large uniform backgrounds in dichoptic matching. Vision Research, 35:239-254.

    Google Scholar 

  • CIE, 1974. Method of Measuring and Specifying Colour Rendering Properties of Light Sources. Bureau Central de la CIE: Paris.

    Google Scholar 

  • De Bruijn, N.G. 1961. Asymptotic Methods in Analysis. North-Holland Publishing Co.: Amsterdam.

    Google Scholar 

  • Fairchild, M.D. and Lennie, P. 1992. Chromatic adaptation to natural and incandescent illuminants. Vision Research. 32:2077-2085

    Google Scholar 

  • Finlayson, G.D., Drew, M.S., and Funt, B.V. 1994 Spectral sharpening: Sensor transformations for improved color constancy. Journal of the Optical Soc. of America A, 11:1553-1563.

    Google Scholar 

  • Forsyth, D.A. 1990. A novel algorithm for color constancy. International Journal of Computer Vision, 5:5-36.

    Google Scholar 

  • Goldberg, R.R. 1970. Fourier Transforms.Cambridge University Press: Cambridge.

    Google Scholar 

  • Judd, D.B., MacAdam, D.L., and Wyszecki, G.W. 1964. Spectral distribution of typical daylight as a function of correlated color temperature. Journal of the Optical Society of Am, 54:1031-1040.

    Google Scholar 

  • Lythgoe, J.N. 1979. The Ecology of Vision. Clarendon Press: Oxford

    Google Scholar 

  • Polya, G. and Szegö, G. 1964. Aufgaben und Lehrsätze aus der Analysis, I, p. 5 (34).

    Google Scholar 

  • Schrödinger, E. 1920. Theorie der Pigmente von grösster Leuchtkraft. Ann. Physik, 62:603-622.

    Google Scholar 

  • Smith, V.C. and Pokorny, J. 1975. Spectral sensitivities of the foveal cone photopigments between 400 and 500 nm. Vision Research, 15:161-171.

    Google Scholar 

  • Sproson, W.N. 1983. Color Science in Television and Display Systems. Adam Hilger Ltd.: Bristol.

    Google Scholar 

  • Szegö, G. 1967. Orthogonal Polynomials. American Mathematical Society Colloquium Publications, Providence: Rhode Island.

    Google Scholar 

  • Titchmarsh, E.C. 1960. The Theory of Functions. Oxford University Press: Oxford.

    Google Scholar 

  • Thornton, W.A. 1986. Evidence for the three spectral responses of the normal human visual system. Color Research and Application, 11:160-163.

    Google Scholar 

  • Van Trigt, C. 1990a. Smoothest reflectance functions I, definition and main results. Journal of the Optical Soc. of Am. A, 7:1891-1904.

    Google Scholar 

  • Van Trigt, C. 1990b. Smoothest reflectance functions II, Complete results. Journal of the Optical Soc. of Am. A, 7:2208-2222.

    Google Scholar 

  • Van Trigt, C. 1994. Metameric blacks and estimating reflectance. Journal of the Optical Society of Am. A, 11:1003-1024.

    Google Scholar 

  • Van Trigt, C. 1994. Color Video system with illuminant-independent properties. International patent application PCT/NL 94/00049, United States Patent 5,905,543, granted May 18, 1999.

  • Van Trigt, C. 1997. Visual system-response functions and estimating reflectance. Journal of the Optical Soc. of Am. A, 14:741-755.

    Google Scholar 

  • Van Trigt, C. 1999. Color rendering, a reassessment, Appendix A. Color Research and Appl, 24:197-206.

    Google Scholar 

  • Vos, J.J. and Walraven, P.L. 1971. On the derivation of the foveal receptor primaries. Vision Research, 11:799-818.

    Google Scholar 

  • Werner, J. and Walraven, J. 1982. Effect of chromatic adaptation on the achromatic locus: The role of contrast, luminance and background color. Vision Research, 22:929-943.

    Google Scholar 

  • West, G. and Brill, M.H. 1982. Necessary and sufficient conditions for von Kries chromatic adaptation to give colour constancy. Journal Mathematical Biology, 15:249-258.

    Google Scholar 

  • Whittaker, E.T. and Watson, G.N. 1962. A Course of Modern Analysis. Cambridge University Press: Cambridge.

    Google Scholar 

  • Worthey, J.A. 1985. Limitations of color constancy. Journal of the Optical Society of America, 2:1014-1025.

    Google Scholar 

  • Wyszecki, G. and Stiles, W.S. 1982. Color Science: Concepts and Methods, Quantitative Data and Formulae. John Wiley & Sons: New York.

    Google Scholar 

  • Yule, J.A.C. 1967. Principles of Color Reproduction.John Wiley and Sons: New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Trigt, C. Illuminant-Dependence of Von Kries Type Quotients. International Journal of Computer Vision 61, 5–30 (2005). https://doi.org/10.1023/B:VISI.0000042932.05887.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VISI.0000042932.05887.4e

Navigation