Skip to main content
Log in

Spectrochemical Properties of Noncubical Transition Metal Complexes in Solutions. XV. Solution Properties of bis(Salicylideneaniline)Copper(II)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The complex obtained by condensation of salicylideneaniline with copper(II) acetate was studied in a variety of solvents. This deep-brown crystalline compound is soluble in common solvents, such as, chloroform, toluene, dioxane, methanol, ethanol, dimethyl formamide, dimethyl sulfoxide, and acetonitrile—a necessary condition for observing solvatochromism. The complex has been characterized by elemental analysis, molar conductivity, EPR, and ultraviolet (UV) and visible (VIS) spectroscopy. The available X-ray data shows planar coordination geometry for the copper center. Combined multi-technique experiments have been applied to confirm the structure of the complex in solution. The molar conductivities indicate nonelectrolytic properties. EPR measurements preclude the possibility of solvent coordination at the axial positions of the complex. Spectroscopic measurements were used to study the coordination properties of donor atoms and their bonding ability, as well as trichromaticity coordinate calculations. The results obtained show that the interactions of metal with donors depend on donor strength and polarity of solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Kurzak and I. Kuźniarska-Biernacka, Spectrosc. Lett. 30, 1609(1997).

    Google Scholar 

  2. K. Kurzak and I. Kuźniarska-Biernacka, J. Solution Chem. 27, 533(1998).

    Google Scholar 

  3. K. Kurzak, I. Kuźniarska-Biernacka, B. Kurzak, and J. Jezierska, J. Solution Chem. 30, 709(2001).

    Google Scholar 

  4. A. Castineiras, J. A. Castro, M. L. Duran, J. A. Garcia-Vazquez, A. Macias, J. Romero, and A. Sousa, Polyhedron 21, 2543(1989).

    Google Scholar 

  5. K. Kurzak, Spectrochemical Properties of Low-Symmetry Mixed Ligands Complexes of Nickel (II), Chromium(III) and Copper(II) in Solutions, No. 33 (University Press, Siedlce, 1991) (in Polish).

    Google Scholar 

  6. J. Burgess, Spectrochim. Acta A, 26, 1957(1970).

    Google Scholar 

  7. Ch. Tsiamis and M. Themeli, Inorg. Chim. Acta 206, 105(1993).

    Google Scholar 

  8. M. Handa, Y. Yukawa, Y. Sasaki, S. Igarashi, and H. Miyamoto, Inorg. Chim. Acta 215, 185(1994).

    Google Scholar 

  9. M. Podsiadla, J. Rzeszotarska, and M. K. Kalinowski, Monatsh. Chem. 125, 827(1994).

    Google Scholar 

  10. R. W. Hunt, Measuring Color (Ellis Horwood, Chichester, 1987)

    Google Scholar 

  11. A. Bartecki, The Colour of Metal Compounds (University of Technology Press, Wroclaw, 1993) in Polish

    Google Scholar 

  12. C. P. Horvitz, P. J. Winslow, J. T. Warden, and C. A. Liesek, Inorg. Chem. 32, 82(1993).

    Google Scholar 

  13. K. Kurzak and B. Kurzak, Spectrochim. Acta A 46, 1561(1990).

    Google Scholar 

  14. K. Kurzak, B. Kurzak, E. Matczak-Jon, and M. Hoffmann, Spectrosc. Lett. 29, 1307(1996).

    Google Scholar 

  15. K. Kurzak, Ph.D. Thesis, University of Technology, Wroclaw, 1983

  16. I. A. Slavič, Nucl. Instr. Methods 134, 285(1976).

    Google Scholar 

  17. K. Kurzak and A. Bartecki, Transit. Metal Chem. 13, 224(1988)

    Google Scholar 

  18. K. Kurzak, Spectrochim. Acta A 47, 1041(1991).

    Google Scholar 

  19. K. Tyrlik, K. Kurzak, and S. L. Randzio, Transit. Metal Chem. 20, 330(1995)

    Google Scholar 

  20. K. Kurzak, Comp. Chem. 24, 519(2000).

    Google Scholar 

  21. C. E. Schäffer, Structure Bonding 5, 68(1968).

    Google Scholar 

  22. C. E. Schäffer, Structure Bonding 14, 69(1973).

    Google Scholar 

  23. C. K. Jørgensen, Modern Aspects of Ligand Field Theory (North-Holland, Amsterdam, 1970).

    Google Scholar 

  24. C. E. Schäffer and C. K. Jørgensen, Mol. Phys. 9, 401(1965).

    Google Scholar 

  25. A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd edn. (Elsevier, Amsterdam, 1984).

    Google Scholar 

  26. A. Bartecki and T. Tłaczała, Spectrosc. Lett. 29, 1307(1996).

    Google Scholar 

  27. F. W. Billmeyer, Jr. and M. Saltzman, Principles of Color Technology (Wiley, New York, 1981).

    Google Scholar 

  28. K. Kurzak, Unpublished computer program.

  29. W. Felhorski and W. Stanioch, Kolorymetria trójchromatyczna (Wydawnictwo Naukowo-Techniczne, Warszawa, 1973).

    Google Scholar 

  30. G. Kortüm, Reflectance Spectroscopy. Principles, Methods, Applications (Springer-Verlag, New York, 1969) (translated from the German by J. E. Lohr, Philadelphia).

    Google Scholar 

  31. T. P. Cheeseman, D. Hall, and T. N. Waters, J. Chem. Soc. A, p. 694(1966).

  32. S. Yamada, Coord. Chem. Rev. 1, 415(1966).

    Google Scholar 

  33. L. Sacconi, Coord. Chem. Rev. 1, 126(1966).

    Google Scholar 

  34. R. H. Holm and M. J. O'Connor, Progr. Inorg. Chem. 14, 241(1971).

    Google Scholar 

  35. K. M. Reddy, M. B. Halli, and A. C. Hiremath, J. Indian. Chem. Soc. 71, 751(1994).

    Google Scholar 

  36. S. Yamada, A. Takeuchi, K. Jamanouchi, and K. Iwasaki, Bull. Chem. Soc. Jpn. 42, 131(1969).

    Google Scholar 

  37. R. Destro, A. Gavezzotti and M. Simonetta, Acta Crystallogr. B, 34, 2867(1978).

    Google Scholar 

  38. M. D. Cohen, G. M. J. Schmidt, and S. Flavian, J. Chem. Soc., p. 2041(1964).

  39. M. D. Cohen, Y. Hirshberg, and G. M. J. Schmidt, J. Chem. Soc., p. 2051(1964).

  40. M. D. Cohen, Y. Hirshberg, and G. M. J. Schmidt, J. Chem. Soc, p. 2060(1964).

  41. M. A. El-Bayomi, M. El-Aasser, and F. Abdel-Halim, J. Amer. Chem. Soc. 93, 586(1971).

    Google Scholar 

  42. S. A. Houlden and I. G. Csizmadia, Tetrahedron 25, 1137(1969).

    Google Scholar 

  43. N. Ebra, Bull. Chem. Soc. Jpn. 34, 1151(1961).

    Google Scholar 

  44. J. W. Ledbetter, Jr., J. Phys. Chem. 70, 2245(1966)

    Google Scholar 

  45. B. West, J. Chem. Soc., p. 3115(1952).

  46. T. Tanaka, J. Amer. Chem. Soc. 80, 4108(1958).

    Google Scholar 

  47. N. Guskos, T. Dziembowska, G. Palios, S. M. Paraskevas, V. Likodimos, E. Grech, J. Typek, M. Wabia, and E. Jagodzińska, Pol. J. Chem. 69, 1630(1995).

    Google Scholar 

  48. P. Gili, M. S. Palacios, M. G. Martin-Reyes, P. Martin-Zarza, C. Ruiz-Perez, F. V. Rodriguez-Romero, and F. V. Lahoz Polyhedron 11, 2171(1992).

    Google Scholar 

  49. L. Wei, R. M. Stogsdill, and E. C. Lingafelter, Acta Crystallogr. 17, 1058(1964).

    Google Scholar 

  50. B. Kamenar, A. Stefanovič, and I. Žigrovič, Z. Krystallogr. 210, 662(1995).

    Google Scholar 

  51. W. J. Geary, Coord. Chem. Rev. 7, 81(1971).

    Google Scholar 

  52. Cambridge Structural Database (Cambridge Crystallographic Data Center, Cambridge, England, 2001).

  53. D. W. Smith, Structure Bonding 35, 87(1978).

    Google Scholar 

  54. A. J. McKinnon, T. N. Waters, and D. Hall, J. Chem. Soc., p. 3290(1964).

  55. V. Gutmann, Coordination Chemistry in Non-aqueous Solutions (Springer, Wien, 1968)

    Google Scholar 

  56. Y. Marcus, Chem. Soc. Rev. 22, 409(1993)

    Google Scholar 

  57. T. Tlaczala, Pol. J. Chem. 71, 823(1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuźniarska-Biernacka, I., Kurzak, K., Kurzak, B. et al. Spectrochemical Properties of Noncubical Transition Metal Complexes in Solutions. XV. Solution Properties of bis(Salicylideneaniline)Copper(II). Journal of Solution Chemistry 32, 719–741 (2003). https://doi.org/10.1023/B:JOSL.0000002991.55538.17

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSL.0000002991.55538.17

Navigation