Skip to main content
Log in

Ascorbic Acid Solubility and Thermodynamic Characteristics in Several Neat Solvents with Temperatures Ranging from 293 to 313 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, the solubility of ascorbic acid (AA) in eight pure solvents, including water, ethanol, methanol, 2-propanol, acetone, acetonitrile, ethyl acetate, and tetrahydrofuran, was measured over the temperature range from 293 K to 313 K. The correlation of the measured solubility data of AA was performed using three non-ideal solution models, namely the modified Apelblat equation, Buchowski–Ksiazczak model (λh equation), and the Van't Hoff model. To understand the dissolution thermodynamic of ascorbic acid, the enthalpy of dissolution ΔHsol, the entropy of dissolution ΔSsol, and the change in Gibbs free energy ΔGsol were determined by the modified forms of the Apelblat equation. The predicted results were in good agreement with the experimental solubility data. Compared to the other thermodynamic models, the computational results reveal that the modified Apelblat equation can give better correlation results for all the selected solvents. The solubility of ascorbic acid increases with rising temperature for all the adopted solvents. In general, the solubility of ascorbic acid in the four polar protic solvents obeys the following order: water > methanol > ethanol > propan-2-ol. On the other hand, the solubility of ascorbic acid in polar aprotic solvents is as follows: tetrahydrofuran > acetone > acetonitrile > ethyl acetate. For all neat solvents, the dissolution process of ascorbic acid was found to be endothermic, entropy-driven, and not spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Englard, S. Seifter, Annu. Rev. Nutr. 6, 365 (1986)

    Article  Google Scholar 

  2. M. Davies, J. Austin, D. Partridge, Vitamin C: its chemistry and biochemistry (Royal Society of Chemistry, London, 1991)

    Google Scholar 

  3. A. Dallos, É. Hajós-Szikszay, J. Liszi, J. Chem. Thermodyn. 30, 263 (1998)

    Article  Google Scholar 

  4. O. Arrigoni, M.C. De Tullio, Biochim. Biophys. Acta 1569, 1 (2002)

    Article  Google Scholar 

  5. G. Pappenberger, H.-P. Hohmann, Adv. Biochem. Eng. Biotechnol. 143, 143 (2014)

    Google Scholar 

  6. B. Bouillot, S. Teychené, B. Biscans, Fluid Phase Equilib. 309, 36 (2011)

    Article  Google Scholar 

  7. A. Sohani, M. Zamani Pedram, S. Hoseinzadeh, J. Mol. Liq. 297, 111847 (2020)

    Article  Google Scholar 

  8. M.B. Asgharnejad Lamraski, G.A. Naikoo, M. Zamani Pedram, A. Sohani, S. Hoseinzadeh, H. Moradi, J. Mol. Liq. 346, 117924 (2022)

    Article  Google Scholar 

  9. S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, J. Mater. Sci. Mater. Electron. 28, 14446 (2017)

    Article  Google Scholar 

  10. S. Hassan, F. Adam, M.R. Abu Bakar, S.K. Abdul Mudalip, M.R.A. Bakar, S.K.A. Mudalip, M.R. Abu Bakar, S.K. Abdul Mudalip, J. Saudi Chem. Soc. 23, 239 (2019)

    Article  Google Scholar 

  11. A. Shalmashi, A. Eliassi, J. Chem. Eng. Data 53, 1332 (2008)

    Article  Google Scholar 

  12. A.C. Ribeiro Neto, R.F. Pires, R.A. Malagoni, M.R. Franco, J. Chem. Eng. Data 55, 1718 (2010)

    Article  Google Scholar 

  13. S. Mirzaei, S. Taghe, F.H. Pirhayati, G. Mohammadi, E. Rahimpour, F. Martinez, A. Jouyban, J. Mol. Liq. 329, 115554 (2021)

    Article  Google Scholar 

  14. A. Jouyban, J. Pharm. Pharm. Sci. 22, 466 (2019)

    Article  Google Scholar 

  15. A. Apelblat, E. Manzurola, J. Chem. Thermodyn. 29, 1527 (1997)

    Article  Google Scholar 

  16. A. Apelblat, E. Manzurola, J. Chem. Thermodyn. 31, 85 (1999)

    Article  Google Scholar 

  17. S.M. Walas, Phase equilibrium in chemical engineering (Butterworth-Heinemann, New York, 1985)

    Google Scholar 

  18. H. Buchowski, A. Khiat, Fluid Phase Equilib. 25, 273 (1986)

    Article  Google Scholar 

  19. H. Buchowski, A. Ksiazczak, S. Pietrzyk, J. Phys. Chem. 84, 975 (1980)

    Article  Google Scholar 

  20. D.J.W. Grant, M. Mehdizadeh, A. Chow, J.E. Fairbrother, Int. J. Pharm. 18, 25 (1984)

    Article  Google Scholar 

  21. S. Krajangsod, S. Chotikamas, A. Tawai, M. Sriariyanun, Orient. J. Chem. 34, 265 (2018)

    Article  Google Scholar 

  22. Y. Hu, G. Wu, P. Gu, W. Yang, C. Wang, Z. Ding, Y. Cao, J. Chem. Thermodyn. 94, 177 (2016)

    Article  Google Scholar 

  23. V. Mohdee, K. Fulajtárová, T. Soták, S. Phatanasri, M. Hronec, U. Pancharoen, J. Mol. Liq. 312, 113370 (2020)

    Article  Google Scholar 

  24. L. Zhang, Y. Zuo, H. Liu, X. Wang, J. Mol. Liq. 308, 113033 (2020)

    Article  Google Scholar 

  25. L. Ding, B. Wang, F. Wang, J. Dong, G. Zhou, H. Li, J. Mol. Liq. 241, 742 (2017)

    Article  Google Scholar 

  26. L. Wang, J. Sun, H. Zhang, Z. Shen, L. Xu, G. Liu, J. Mol. Liq. 283, 462 (2019)

    Article  Google Scholar 

  27. P.J. Gandhi, Z.V.P. Murthy, J. Chem. Eng. Data 55, 5050 (2010)

    Article  Google Scholar 

  28. U. Domanska, Fluid Phase Equilib. 26, 201 (1986)

    Article  Google Scholar 

  29. A. Kumari, S. Kadakanchi, R. Tangirala, P.K. Thella, B. Satyavathi, J. Chem. Eng. Data 62, 87 (2017)

    Article  Google Scholar 

  30. R. Li, X. Chen, G. He, C. Wu, Z. Gan, Z. He, J. Zhao, D. Han, J. Chem. Thermodyn. 144, 106062 (2020)

    Article  Google Scholar 

  31. Y. Yang, S. Du, W. Dong, G. Wang, H. Li, J. Gong, S. Wu, J. Chem. Eng. Data 65, 877 (2020)

    Article  Google Scholar 

  32. P. Cysewski, T. Jeliński, D. Procek, A. Dratwa, Fluid Phase Equilib. 529, 112883 (2021)

    Article  Google Scholar 

  33. Y. Ma, Y. Cao, Y. Yang, W. Li, P. Shi, S. Wang, W. Tang, J. Mol. Liq. 272, 676 (2018)

    Article  Google Scholar 

  34. K. Sandeepa, K. Ravi Kumar, T.S.V.R. Neeharika, B. Satyavathi, P.K. Thella, J. Chem. Eng. Data 63, 2028 (2018)

    Article  Google Scholar 

  35. R. Heryanto, M. Hasan, E.C. Abdullah, A.C. Kumoro, ScienceAsia 33, 469 (2007)

    Article  Google Scholar 

  36. A. Ksia̧ẑczak, J.J. Kosinski, Fluid Phase Equilib. 44, 211 (1988)

    Article  Google Scholar 

  37. M. Xiao, Y. Shao, W. Yan, Z. Zhang, J. Chem. Thermodyn. 43, 240 (2011)

    Article  Google Scholar 

  38. Y. Marcus, Chem. Soc. Rev. 22, 409 (1993)

    Article  Google Scholar 

  39. F. Martínez, M.Á. Peña, P. Bustamante, Fluid Phase Equilib. 308, 98 (2011)

    Article  Google Scholar 

  40. J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, J. Mol. Liq. 293, 111507 (2019)

    Article  Google Scholar 

  41. L. Nemdili, O. Koutchoukali, M. Bouhelassa, J. Seidel, F. Mameri, J. Ulrich, J. Cryst. Growth 451, 88 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by The Ministry of Higher Education and Scientific Research of Algeria (project No. A16N01UN250320220002) and the General Directorate of Scientific Research and Technological Development (GD-SRTD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slimane Merouani.

Ethics declarations

Conflict of interest

All authors of this manuscript declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemdili, L., Guedjali, R., Habchi, S. et al. Ascorbic Acid Solubility and Thermodynamic Characteristics in Several Neat Solvents with Temperatures Ranging from 293 to 313 K. Int J Thermophys 43, 123 (2022). https://doi.org/10.1007/s10765-022-03055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03055-4

Keywords

Navigation